

water & sanitation

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

RESERVE DETERMINATION STUDIES FOR SELECTED SURFACE WATER, GROUNDWATER, ESTUARIES AND WETLANDS IN THE USUTU/MHLATUZE WATER MANAGEMENT AREA WP 10544

> LAKE SIBAYA INTERMEDIATE EWR VOLUME 1 - ECOCLASSIFICATION REPORT FINAL NOVEMBER 2015 Report No. RDM/WMA6/CON/COMP/1613

DEPARTMENT OF WATER AND SANITATION

CHIEF DIRECTORATE: WATER ECOSYSTEMS CONTRACT NO. WP 10544

RESERVE DETERMINATION STUDIES FOR SELECTED SURFACE WATER, GROUNDWATER, ESTUARIES AND WETLANDS IN THE USUTHU/MHLATUZE WATER MANAGEMENT AREA:

> LAKE SIBAYA INTERMEDIATE EWR VOLUME 1 - ECOCLASSIFICATION REPORT FINAL

> > **NOVEMBER 2015**

Copyright reserved:

No part of this publication may be reproduced in any manner without full acknowledgement of the source.

This report should be cited as:

Department of Water and Sanitation (DWS). 2015. Chief Directorate – Water Ecosystems: Reserve determination study of selected surface water and groundwater resources in the Usuthu/Mhlathuze Water Management Area. Lake Sibaya Intermediate EWR – Volume 1 - Ecoclassification Report. Produced by Tlou Consulting (Pty) Ltd and Southern Waters Ecological Research and Consulting cc. Report no: RDM/WMA6/CON/COMP/1613

Contract Title:	Reserve determination studies for selected surface water, groundwater, estuaries and wetlands in the Usuthu - Mhlathuze Water Management Area
Report Title:	Lake Sibaya Intermediate EWR: Volume 1 - Ecoclassification Report
Report compilation:	A Singh
Editor	K Reinecke

Revision	Date	Report Status
Draft 1.0	15 Oct 2015	Draft for internal comment
Draft 1.1	28 Oct 2015	Draft for external comment
Final	30 November 2015	Final

Consultants: Tlou Consulting (Pty) Ltd and Southern Waters

.

Checked for the Consultants by:

Dr C Brown Internal Reviewer

Editor

Approved for the Consultants by:

Bugh

A Singh **Project Leader**

.

Client: Department of Water and Sanitation

Approved for the DWS:

..... N Mohapi Chief Director: Water Ecosystems

ACKNOWLEDGEMENTS

This report was compiled and edited with assistance and specialist input from the following project members.

- Karl Reinecke
- Alison Joubert
- Andrew Birkhead
- Steve Weerts
- Jane Turpie
- James Mackenzie
- Ricky Taylor
- Susan Taljaard
- Cate Brown
- Adhishri Singh

TABLE OF CONTENTS

1	INTR	ODUCTION	.1
	1.1	BACKGROUND TO THE STUDY	. 1
	1.1.1	1 Study objectives	. 1
	1.2	THIS REPORT	. 2
	1.2.1	1 Study team	. 3
2	ORG	ANISATION OF THE STUDY AREA	.4
	2.1	Delineation of Lake Sibaya	. 4
	2.2	STUDY ZONES	. 4
3	ECOS	STATUS	.6
	3.1	EWR ZONE – MAIN BASIN (MB)	. 6
	3.1.1	1 Data availability	. 6
	3.1.2	2 Ecological importance and sensitivity	. 8
	3.1.3	3 Reference conditions	10
	3.1.4	4 Baseline ecological condition	12
	3.1	.4.1 Causes and sources	.12
	3.1	.4.2 Trends	13
	3.1.5	5 Ecostatus	13
	3.2	EWR ZONE – NORTHERN ARM (NA)	15
	3.2.1	1 Data availability	15
	3.2.2	2 Ecological importance and sensitivity	16
	3.2.3	3 Reference conditions	18
	3.2.4	4 Baseline ecological condition	20
	3.2	.4.1 Causes and sources	20
	3.2	2.4.2 Trends	21
	3.2.5	5 Ecostatus	22
	3.3	EWR ZONE – WESTERN ARM (WA)	23
	3.3.1	1 Data availability	23
	3.3.2	2 Ecological importance and sensitivity	24
	3.3.3	3 Reference conditions	26
	3.3.4	4 Baseline ecological condition	28
	3.3	.4.1 Causes and sources	29
	3.3. २२४	5 Ecostatus	29 20
	3.4	FWR ZONE - SWR	30
	3.4	1 Data availability	32
	340	 Ecological importance and sensitivity 	22
	312	Reference conditions	25
	311	A Baceline ecological condition	,, 27
	3.4.4		57

	3.4.4.1	Causes and sources	37
	3.4.4.2	Trends	
	3.4.5	Ecostatus	39
3	.5 EWF	ZONE – SOUTHERN BASIN (SB)	40
	3.5.1	Data availability	40
	3.5.2	Ecological importance and sensitivity	41
	3.5.3	Reference conditions	43
	3.5.4	Baseline ecological condition	45
	3.5.4.1	Causes and sources	46
	3.5.4.2	Trends	46
	3.5.5	Ecostatus	47
4	ECOCLAS	SIFICATION, ECOLOGICAL SENSITIVITY AND IMPORTANCE, AND THE REC	OMMENDED
AN	D ALTERNA	ATIVE ECOLOGICAL CATEGORIES	
4	.1 Pres	ENT ECOLOGICAL STATUS AND ECOLOGICAL IMPORTANCE AND SENSITIVITY	49
4	.2 RECO	DMMENDED AND ALTERNATIVE ECOLOGICAL CATEGORIES	49
5	REFEREN	CES	

LIST OF FIGURES

GENERIC PROCEDURE FOR THE DETERMINATION OF THE ECOLOGICAL RESERVE	2
THE FIVE MAIN REGIONS OF THE LAKE	4
Main Basin	6
Northern Arm	15
Western Arm	23
South Western Basin	32
Southern Basin	40
	GENERIC PROCEDURE FOR THE DETERMINATION OF THE ECOLOGICAL RESERVE

LIST OF TABLES

TABLE 1.1	MEMBERS OF THE STUDY TEAM FOR LAKE SIBAYA PORTION OF THE OVERALL STUDY	3
TABLE 2.1	SITE CODES FOR THE FIVE REGIONS	5
TABLE 3.1	DESCRIPTION OF CONFIDENCE RATINGS	6
TABLE 3.2	DATA AVAILABLE AT EWR MB	7
TABLE 3.3	EIS OF EWR MB	8
TABLE 3.4	REFERENCE CONDITION AT EWR MB	10
TABLE 3.5	CAUSES AND SOURCES OF PES AT EWR MB	12
TABLE 3.6	TRENDS IN PES FOR EWR MB	13
TABLE 3.7	PRESENT ECOLOGICAL STATUS OF ALL COMPONENTS AT EWR MB	13
TABLE 3.8	OVERALL PRESENT ECOLOGICAL STATUS FOR EWR MB	14
TABLE 3.9	DATA AVAILABLE AT EWR NA	15
TABLE 3.10	EIS OF EWR NA	16
TABLE 3.11	REFERENCE CONDITION AT EWR NA	18
TABLE 3.12	CAUSES AND SOURCES OF PES AT EWR NA	20
TABLE 3.13	TRENDS IN PES FOR EWR NA	21
TABLE 3.14	PRESENT ECOLOGICAL STATUS OF ALL COMPONENTS AT EWR NA	22
TABLE 3.15	OVERALL PRESENT ECOLOGICAL STATUS FOR EWR NA	22
TABLE 3.16	DATA AVAILABLE AT EWR WA	23
TABLE 3.17	EIS OF EWR WA	24
TABLE 3.18	REFERENCE CONDITION AT EWR WA	27
TABLE 3.19	CAUSES AND SOURCES OF PES AT EWR WA	29
TABLE 3.20	TRENDS IN PES FOR EWR WA	30
TABLE 3.21	PRESENT ECOLOGICAL STATUS OF ALL COMPONENTS AT EWR WA	30
TABLE 3.22	OVERALL PRESENT ECOLOGICAL STATUS FOR EWR WA	31
TABLE 3.23	DATA AVAILABLE AT EWR SWB	32
TABLE 3.24	EIS OF EWR SWB	33
TABLE 3.25	REFERENCE CONDITION AT EWR SWB	35
TABLE 3.26	CAUSES AND SOURCES OF PES AT EWR SWB	38
TABLE 3.27	TRENDS IN PES FOR EWR SWB	38

TABLE 3.28	PRESENT ECOLOGICAL STATUS OF ALL COMPONENTS AT EWR SWB	39
TABLE 3.29	OVERALL PRESENT ECOLOGICAL STATUS FOR EWR SWB	39
TABLE 3.30	DATA AVAILABLE AT EWR SB	40
TABLE 3.31	EIS OF EWR SB	41
TABLE 3.32	REFERENCE CONDITION AT EWR SB	43
TABLE 3.33	CAUSES AND SOURCES OF PES AT EWR SB	46
TABLE 3.34	TRENDS IN PES FOR EWR SB	47
TABLE 3.35	PRESENT ECOLOGICAL STATUS OF ALL COMPONENTS AT EWR SB	47
TABLE 3.36	OVERALL PRESENT ECOLOGICAL STATUS FOR EWR SB	48
TABLE 4.1	PES AND EIS OF EACH OF THE EWR ZONES IN LAKE SIBAYA	49
TABLE 4.2	RECOMMENDED AND ALTERNATIVE ECOLOGICAL CATEGORIES (EC) FOR EACH OF THE EWR ZONES	49

ABBREVIATIONS AND ACRONYMS

AEC	Alternative Ecological Category
BHN	Basic Human Needs
CSIR	Council for Scientific and Industrial Research
DRIFT	Downstream Response to Imposed Flow Transformation
DSF	Desired Future Status
DSS	Decision Support System
DWA	Department of Water Affairs
DWS	Department of Water and Sanitation
EC	Ecological Category
EIS	Ecological Importance and Sensitivity
EMC	Ecological Management Class
ERC	Ecological Reserve Category
EWR	Environmental Water Requirements
IFR	Instream Flow Requirement
LWR	Lake Water Requirement Approach
PES	Present Ecological State
REC	Recommended Ecological Condition
WMA	Water Management Area

GLOSSARY OF TERMS

- <u>Ecological Categories.</u> A distinction is made between Management Classes, which form part of the National Classification System, and Ecological Categories, which forms part of the Ecological Water Requirement assessment.
- <u>Ecological Category</u> (EC) replaces former terms used, namely: Ecological Reserve Category (ERC), Desired Future State (DFS) and Ecological Management Class (EMC).
- <u>Ecological Water Requirements</u> (EWR) should be used instead of the term Instream Flow Requirements (IFR) for various reasons, including international acceptance of the former term.
- <u>Ecosystem Integrity</u>: refers to the integrated composition of physicochemical, habitat and biotic characteristics on a temporal and spatial scale that are comparable to the characteristics of natural ecosystems of the region.
- <u>Preliminary Reserve</u> refers to Reserve signed off by the Minister or her representative in the absence of the Classification Process having been undertaken in the basin.
- **<u>Recommended Ecological Condition</u>** (REC) The target maintenance Ecological Condition for a water resource based solely on ecological criteria.
- <u>Reserve</u> refers to the EWR for maintaining a particular ecological condition where operational limitations and stakeholder consultation are taken into account. The Reserve includes both ecological and Basic Human Needs (BHN) requirements.

1 INTRODUCTION

1.1 Background to the study

The Chief Directorate: Water Ecosystems of the Department of Water and Sanitation (DWS), issued an open tender invitation for the "Appointment of a Professional Service Provider to undertake Reserve Determinations for selected Surface water, Groundwater, Estuaries and Wetlands in the Usuthu to Mhlatuze Basins". The focus on this area was a result of the high conservation status and importance of various water resources in the basin and the significant development pressures affecting the availability of water in the area.

Reserve determinations are required to assist the DWS in making informed decisions with respect to the magnitude of the impacts of the proposed developments on the water resources in the Water management Area (WMA), and to provide the input data for Water Resource Classification of the area, and eventual gazetting of the Reserve (DWAF 1999a).

In July 2013, DWS appointed Tlou Consulting to undertake the project.

1.1.1 Study objectives

The objectives of the overall study are to:

- determine the Ecological Reserve (DWAF 1999a) at various levels of detail, for the Nyoni, Matigulu, Mlalazi, Mhlatuze, Mfolozi, Nyalazi, Hluhluwe, Mzinene, Mkuze, Assegaai and Pongola Rivers;
- determine the Ecological Reserve, at an Intermediate level, for the Pongola Floodplain;
- determine the Ecological Reserve, at an Intermediate level, for the St Lucia/Mfolozi, Estuary System;
- determine the Ecological Reserve, at an Rapid level, for the Mlalazi Estuary;
- determine the Ecological Reserve, at a Rapid level, for the Amatikulu Estuary;
- determine the Ecological Reserve, at an Intermediate level, for Lake Sibaya;
- determine the Ecological Reserve, at a Rapid level for Kozi Lake and Estuary;
- classify the causal links between water supply and condition of key wetlands;
- incorporate existing EWR assessments on the Mhlatuze (river and estuary) and Nhlabane (lake and estuary) into study outputs;
- determine the groundwater contribution to the Ecological Reserve, with particular reference to the wetlands;
- determine the Basic Human Needs Reserve for the Usuthu/Mhlatuze WMA;
- outline the socio-economic water use in the Usuthu/Mhlatuze WMA;
- build the capacity of team members and stakeholders with respect to EWR determinations and the ecological Reserve.

1.2 **This report**

This report is Volume 1 of four volumes of the Lake Sibaya Intermediate EWR Report:

Volume 1: Ecoclassification Report

Volume 2: EWR Assessment - Results

Volume 3: Specialists reports

Volume 4: Ecospecs and Monitoring Programme.

This report covers the activities required for Step 3 of the Reserve determination process as prescribed by the CD: RDM of DWS (DWAF 1999a; Kleynhans *et al.* 2007).

This report serves to document the results of the ecological classification (Step 3 in Figure 1.1) for the EWR zones within Lake Sibaya for which Intermediate EWR determinations were undertaken.

Figure 1.1 Generic procedure for the determination of the Ecological Reserve

The results are provided per EWR zone and include the following:

- Data availability.
- Ecological Importance and Sensitivity (EIS)
- Reference conditions.

LAKE SIBAYA INTERMEDIATE EWR - VOLUME 1: ECOCLASSIFICATION

- Baseline ecological condition, including:
 - o individual component Ecoclassification;
 - o cause and sources;
 - o trends;
 - o Ecostatus.
- Recommended Ecological category (REC) for each specialist component and EcoStatus.
- Alternative Ecological categories (AEC) for each specialist component and EcoStatus.
- Confidence in the results.

1.2.1 Study team

The names and affiliations of the members of the study team are provided in Table 1.1.

Name	Affiliation	Role
Adhishri Singh	Tlou Consulting	Project Manager
Cate Brown	Southern Waters	Internal review
Alison Joubert	Southern Waters	DRIFT DSS manager
Karl Reinecke	Southern Waters	EWR process co-ordinator
Drew Birkhead	Streamflow Solutions	Hydraulics
Susan Taljaard	CSIR	Water quality
James MacKenzie	BioRiver Solutions	Vegetation
	Hydrological Training and	Herpetofauna, semi-aquatic
Ricky Taylor	Research Specialists	mammals, molluscs and
	Research Specialists	macrocrustacea
Steven Weerts	CSIR	Icthyofauna
Jane Turpie	Anchor Environmental	Avifauna
Toriso Tlou	Tlou Consulting	Social

2 ORGANISATION OF THE STUDY AREA

2.1 Delineation of Lake Sibaya

The morphology of Lake Sibaya is a result of sedimentary processes, driven by fluctuating water levels and wind driven currents that dictate Lake Sibaya's morphology through the processes of infilling and shoreline progradation associated with the lake segmentation process (Miller 1998). Importantly, lake morphology is driven by lake water level, with the highest levels of erosion, and hence sediment deposition in the lake, occurring at high water levels (Miller 1998).

Lake Sibaya can be subdivided into five regions, the: Main Basin, Northern Arm, Western Arm, Southwestern Basin and Southern Basin (Hill 1979, cited in Miller 1998; Figure 2.1).

Figure 2.1 The five main regions of the lake

2.2 Study zones

The study zones are the five regions: Main Basin, Northern Arm, Western Arm, Southwestern Basin and Southern Basin (Figure 2.1). Site codes for the five regions are provided in Table 2.1.

Table 2.1Site codes for the five regions

Zone	Code
Main Basin	MB
Northern Arm	NA
Western Arm	WA
Southwestern Basin	SWB
Southern Basin	SB

3 ECOSTATUS

A summary of the data used to assess the ecological condition of each region is provided for each, along with a description of the Ecostatus. The Ecoclassification results are summarized in Section 4.

3.1 EWR Zone – Main Basin (MB)

Figure 3.1 shows the location of the Main Basin in relation to Lake Sibaya and photographs of some of the areas that were sampled as part of the study.

Figure 3.1 Main Basin

3.1.1 Data availability

The data available at EWR MB are summarised in Table 3.2. Scores for confidence ratings are provided in Table 3.1.

Table 3.1 Description of confidence ratings

Confidence rating	Description
1	Low confidence
2	Low to medium confidence
3	Medium confidence
4	Medium to high confidence
5	High confidence

Component	Data availability	References	Confidence
Water quality	Occasional data 1967-1977: pH, DO, Secchi depth, DIN, DIP; Jul 2015: EC, cations/anions, pH, Turbidity, DO, DIN, DIP. Allanson, 19 This study		2
	Description of coastal dune forests and lake- dependant macrophytes.	Allanson (1979)	4
	Trends in sediment and nutrient accumulation rates.	Humphries & Benitez-Nelson (2013)	4
	Satellite data (7 Oct 2004 to 13 Jan 2015).	Google Earth ©	5
	Lake level data (1980 to 2015).	DWS	2
	DEMs.		2
	General vegetation distribution and description.	Mucina & Rutherford (2006)	5
	Distribution data of plant species.	POSA SANBI (2009)	3
Vegetation	Species confirmation.	iSpot SANBI	4
	Holocene sequence of vegetation at Sibaya.	Neumann <i>et al.</i> (2008)	5
	Bathymetry and sediment distribution.	Miller (1998)	5
	Red list of SA plants.	Raimondo <i>et al.</i> (2009)	5
	Geology and geohydrology.	Both & Singh (2012)	5
	Regions of Floristic Endemism in Southern Africa.	Van Wyke & Smith (2001)	5
	Site visit (15 July 2015); collection of species height / depth relative to WL and vegetation assessment.	This report	5
Molluscs	Detailed studies by Boltt and other researchers from Rhodes University in the 1970s (Hart 1979 & 1980) give species and abundances per habitat and at different depths. Complementing this is Appleton's work on snails and Miranda's work on Terebia.	Hart (1979 & 80); Appleton (1977 & 1980); Miranda (2012 & 2014)	4
Crustacea	Detailed studies by Boltt and other researchers from Rhodes University in the 1970s (Hart 1979 & 1980) give species and abundances per habitat and at different depths.	Hart (1979 & 80)	4
Fish	Good information on biologies of selected species in Lake Sibaya. No site specific data. No quantitative data on abundances.	Bowen SH (1976). Bowen SH (1978). Bruton MN (1979). Bruton MN (1979). Bruton MN (1980). Bruton MN and Allanson BR (1974).	3
Herpetofauna	Count data and nest censuses from EKZNW, and Combrink et al. (2011) which provide census data and the decline of crocodiles in Lake Sibaya.	EKZNW census files; Combrink et al. 2011	5
Birds*	Counts of top 15 species for 1970 and 1976 (Bruton 1979); Bird checklist by Cyrus et al. (1980); Brief description by Bruton (1980); Phil Hockey count Dec 1981 (Ryan et al. 1988); Summer and winter CWAC counts 1992-2014;	See report.	5

Table 3.2Data available at EWR MB

Component	Data availability	References	Confidence
	Field notes (R Taylor) Jul 2015.		
Semi-aquatic mammals	Count data and life history parameters from EKZNW, and Taylor (2013) which provide census data and the decline of hippopotamuses in Lake Sibaya.	EKZNW; Taylor 2013	5

3.1.2 Ecological importance and sensitivity

The EIS of EWR MB, with motivations, is provided in Table 3.3.

DETERMINANTS	SCORE	REASONING	CONFIDENCE
BIOTA	(0-4)		
Rare & endangered (range: 4=very high - 0 = none)	3.75	Wolffellia denticulata listed as VU D2 (http://redlist.sanbi.org/species.php?species=3873- 1); last recorded at Sibaya 1973 by A.A. Mauve (http://sibis.sanbi.org/faces/SearchSpecimen/Specim enDetails.jsp?1=1); not recorded at site but is possibly present. <i>Silhouettea sibayi</i> is listed as Endangered on the IUCN Red List of Threatened Species. Many other species are IUCN listed, albeit in the "Least Concern" category. Hippo and crocodiles are red data species. Presence of 7 bird species that are on the regional red data list (2014), though none in very large numbers except occasionally.	3.75
Unique (endemic, isolated, etc.) (range: 4=very high - 0 = none)	3.00	<i>Cyperus natalensis</i> restricted to area; falls within Maputaland Centre of plant endemism (Van Wyk & Smith, 2001) but mostly applicable to species not associated with the Lake; isolated distribution of swamp forest associated with western arm. Several species are endemic to southern Africa. <i>Aplocheilichthys myaposae</i> occurs in KZN only, so is highly localised. This lake is also unique in its fish assemblage having relict remnants of an estuarine assemblage, despite being isolated from the sea since the Pleistocene. Estuarine relic molluscs, crustacea and herptofauna. No, though several bird species at the edge of range in SA.	4.00
Intolerant (flow & flow related water quality) (range: 4=very high - 0 = none)	2.50	Aquatic and emergent macrophytes highly dependent on lake level High water levels and connectivity with adjacent swamps, pans and wetlands are needed for several species of fishes. This includes facultative use by two species of catfish (<i>Clarias theodorae</i> and to a lesser extent <i>Clarias gariepinus</i>). Climbing perch (<i>Ctenopoma multispine</i>) have a more obligate need for reaching these peripheral habitats for breeding. Shallow, gentle sloping shelves are needed for several other species as well, including those that are numerically dominant. These habitats (and therefore these fauna) are sensitive to lake water level fluctuations. Most of the herpetofauna, crustacea,	3.25

Table 3.3 EIS of EWR MB

DETERMINANTS	SCORE	REASONING	CONFIDENCE
		molluscs and mammal species are 'generalists'. Several species have relatively narrow habitat requirements.	
Species/taxon richness (range: 4=very high - 1=low/marginal)	3.00	Falls within the Maputaland-Pondoland region of plant endemism with app. 7000 taxa (Van Wyk & Smith, 2001) Species richness of KZN freshwater fishes is naturally low (south of the Pongola). This lake has elevated species richness because of the relict estuarine component in its fish fauna. There is a tropical richness, but reduced a bit by the isolation causing an 'island' effect.	4.00
HABITATS	(0-4)		
Diversity of types (4=Very high - 1=marginal/low)	3.00	Aquatic, littoral, pan adjacent and off-lake wetland, open sandy beach areas, protected coves, stream inflow areas, coastal dune, swamp forest. This is one of very few coastal lakes in the country. It is the only system that has lost its estuarine connection, but which retains a relict estuarine fauna. The high diversity of submerged, emergent and floating plants, together with connect pans, swamps and wetlands, provides a very high diversity of freshwater habitats not found anywhere else at one locality. High diversity of habitats, reduced by the even morphology of the basin, few rocks and consistent sized sand grains.	4.00
Refugia (4=Very high - 1=marginal/low)	2.75	Refugia for smaller similar systems during extended drought. This is one of the few (and possibly only) permanent deep freshwater bodies on the Maputaland flats. It becomes a refuge during drought and centre of distribution for fishes that inhabit pans, swamps and wetlands on the wider coastal plain. The embayments are very important to the mammals, herpetofauna, crustacea and molluscs.	4.00
Sensitivity to flow changes (4=Very high - 1=marginal/low)	2.75	Large ground water dependant system more resilient to change. The main habitat types, gentle banks and shallow water with submerged vegetation, are susceptible to lake water level drop. Because of the systems morphology these habitats are lost very rapidly below critical water levels. Herptofauna, molluscs, crustacea and mammals are affected by water level changes.	3.75
Sensitivity to flow related water quality changes (4=Very high - 1=marginal/low)	2.40	Large ground water dependant system more resilient to change. At very low levels saltwater intrusion might occur, which will result in the loss of (vegetated) habitat as well as primary freshwater elements of the fish assemblage. Most species would be affected. Lake water levels would need to drop below sea level for this to occur. At levels above this water quality should remain suitable for all fishes in the lake. Flow translates into Water level in these lakes. WQ parameter influenced by lake level is EC The dystrophic water is easily enriched with nutrients.	3.80
Migration route/corridor (instream & riparian, range: 4=very high - 0 = none)	1.50	Occurs within a string of such systems along the coastline but not likely to be important for plant species migration. The lake itself is not used as a migration route, but high water levels do facilitate migration to adjacent swamps, pans and wetlands for several species of fishes. These include two species	3.25

DETERMINANTS	SCORE	REASONING	CONFIDENCE
		of catfish (<i>Clarias theodorae</i> and to a lesser extent <i>Clarias gariepinus</i>) as well as climbing perch (<i>Ctenopoma multispine</i>). This is an endorheic system - but hippopotami, crocodiles and birds do move between waterbodies.	
Importance of conservation & natural areas (range, 4=very high - 0=very low)	4.00	Within iSimangaliso and largest freshwater lake in southern Africa, RAMSAR site. This is a unique lake in that its biota retains a relict fauna of a geological past. It remains in good condition and its catchment can still be managed to protect its ecological integrity as a relatively pristine freshwater lake adjacent to a World Natural heritage site. This is a Ramsar and World Heritage Site - the highest conservation rating that can be given.	4.25
MEDIAN OF DETERMINANTS	3		
EISC	HIGH		

3.1.3 Reference conditions

The expected reference condition at EWR MB is described in Table 3.4.

COMPONENT	REFERENCE CONDITION	CONFIDENCE	REFERENCES
Water quality	DO, Turbidity and Conductivity as Present. DIN ~0.07 mg/l (deeper waters) and 0.1 mg/l (shallower waters, reflecting some input from peripheral vegetation under natural); DIP ~0.02 mg/l.	2	Expert judgement based on available data; De Villiers & Thiart, 2007
Vegetation	The Main Basin is characterised by more exposed, straighter shorelines than the other areas of the lake and as such submerged aquatic vegetation is expected to be less well represented and more generally dominated by species are resilient to wind and wave action, such as Fennel-leaved Pondweed (<i>Stuckenia</i> <i>pectinatus</i>) and Saw Weed (<i>Najas marina</i> <i>subsp. armata</i>). Spiked Water-milfoil (<i>Myriophyllum spicatum</i>), native to Europe, Asia and North Africa, is expected to be absent. Similarly, emergent macrophytes in the littoral zone are expected to be less well developed as a result of exposure to prevailing wind and wave action. Along most shores the dominant plant form is likely to be sedges and grasses (notably <i>Schoenoplectus</i> <i>scirpoides, Juncus oxycarpus, Cyperus</i> <i>natalensis</i>) with coverage being lower with more exposure. Alien and woody species would be absent from this zone. Shoreline macrophytes are those species that occur between the emergent macrophytes and	4	Mucina & Rutherford, 2006; Allanson, 1979; Ricky Taylor, per com

Table 3.4Reference condition at EWR MB

L		1	r
COMPONENT	REFERENCE CONDITION	CONFIDENCE	REFERENCES
	the tree line and along open exposed		
	beach areas where those occur. This zone		
	should be dominated by a mixture of		
	grasses and sedges (notably C.		
	natalensis, Juncus oxycarpus,		
	Dactyloctenium geminatum and Imperata		
	cylindrica) and should be free of alien or		
	woody species. The tree line is where		
	woody vegetation starts and should		
	characteristically be in keeping with the		
	surrounding vegetation type. This is some		
	Manutaland Coastal Belt but mostly		
	Northern Coastal Forest (specifically Dune		
	Forest) The beginning of this zone should		
	remain clearly defined and usually		
	indicates a lovel beyond which inundation		
	indicates a level beyond which mundation		
	is rare. Some encroachment of the		
	snoreline zone by woody species is		
	natural (especially by A. karoo) but should		
	be transient and reduced by lake level		
	fluctuations. High woody aerial cover,		
	notably A. karoo, S. cordatum and Dune		
	Forest elements, should dominate this		
	zone.		
Molluscs	Same condition but with no Tarebia.	5	Miranda (2012)
Crustacea	Before habitat alteration by Myriophyllum -	3	
Ordoladea	no info available of this condition,	0	
	Part of an oligo-mesotrophic, endorheic		
	lake with seasonally connected swamps		
	and shallow pans. Large, deep basin with		
	naturally fluctuating water level. Good		
	water quality characterised by well		
	oxygenated, clear waters with naturally		
	elevated chloride and calcium		
	concentrations. At high levels large areas		
	of shallow shelf areas are used and fish		
	gain access to flooded marginal habitats		
Fish	and allocthonous carbon inputs Shallow	н	Allanson BR (1979).
	areas become increasingly wave washed		
	with decreasing water level and during		
	drought are near fish babitat because		
	aquatic vogetation has died back and		
	boon imposted by wayon summer day		
	time water temperatures are tee high for		
	time water temperatures are too high for		
	adults of several species, and detritus and		
	microphytobenthic beds (diatoms) are		
		_	
Herpetofauna	There were more crocodiles than present.	5	EKZNW census data
	The avifauna was dominated by Reed &		
Birds*	vvnitebreasted Cormorants. Other		
	common species included three species of		
	kingtishers, African Fish Eagles (/prs),		
	several large herons, African Darter and	3	Bruton (1979)
	Greyheaded Gull. The area was an	-	
	important breeding area for Whitefronted		
	Plover, and supported few other waders.		
	The sheltered bays had a distinctive fauna		
	characterised by African Jacana, Black		

COMPONENT	REFERENCE CONDITION	CONFIDENCE	REFERENCES
	Crake, African Purple Gallinule and Common Moorhen; Little Grebe (=Dabchick) was the most common species found in open water areas.		
Semi-aquatic mammals	More hippopotami were found.	5	EKZNW census data

3.1.4 Baseline ecological condition

This section summarises the outcome of the discipline specific Ecoclassification assessments that are provided in Volume 3: Specialist reports.

3.1.4.1 Causes and sources

Causes and sources for the Present Ecological State are summarised in Table 3.5.

COMPONENT	CAUSES	SOURCES	FLOW OR NON-FLOW RELATED	CONFIDENCE
Water quality	Assuming limited DDT contamination.	Spraying of DDT for malaria.	Non-flow	2
	Altered species composition in the aquatic zone.	Prevalence of <i>M.</i> <i>spicatum</i> in aquatic zone.	Non-flow	5
Vegetation	Reduced cover and abundance of emergent macrophytes.	Receding lake levels combined with exposure to prevailing winds.	Flow	5
	Altered species composition in the shoreline vegetation.	Encroachment of zone by woody species (<i>A. karoo</i> and <i>S. cordatum</i>).	Flow	5
Molluscs	Invasion of an alien species (Tarebia).		Non-flow	5
Crustacea	Habitat altered by the invasion of an alien species (<i>Myriophyllum</i>).		Non-flow	3
Fish	Lake water level reductions.	Surface water and groundwater abstraction.	Flow	5
Herpetofauna	Severe poaching (of crocodiles and nests) has decimated numbers.		Non-flow	5
Birds*	Water level, emergent vegetation, shallow backwater areas, exposed shoreline etc	Various.	Largely flow related	4
Semi-aquatic mammals	Severe poaching of hippopotamuses has decimated numbers.		Non-flow	5

Table 3.5 Causes and sources of PES at EWR M
--

3.1.4.2 Trends

Trends in the Present Ecological Status for all components of EWR MB are summarised below in Table 3.6.

COMPONENT	ABSENT/POSITIVE/NEGATIVE	CONFIDENCE
Water quality	Absent.	2
Vegetation	Stable for alien species; negative for receding lake levels.	4
Molluscs	Negative - the <i>Tarebia</i> are still having and increasing impact.	3
Crustacea	Absent - system has now stabilised since the introduction of <i>Myriophyllum</i> (>50 years ago) which altered habitat.	3
Fish	Negative.	5
Herpetofauna	Negative - Crocodile numbers declining rapidly.	5
Birds*	Negative for Cormorants, darters, kingsfishers and birds of prey which have decreased; positive for other species as they have increased with recent drying.	4
Semi-aquatic mammals	Negative - Hippo numbers still declining rapidly.	5

* Birds were assessed for the overall Lake and not individual Basins/ Arms

3.1.5 Ecostatus

The Present Ecological Status and the Recommended Ecological Category of each component at EWR MB is summarised below in Table 3.7.

COMPONENT	% EC	EC	REC	OF SIGNIFICANCE/REASON FOR REC	
Water quality	97	А	А	Water quality resetting mechanisms (e.g. flushing) in lakes ar very weak, thus maintain high WQ.	
Vegetation	70.7	С	В	The EIS of the area is HIGH and within a protected area, so the system should be managed towards a B.	
Molluscs	70	С	С	Tarebia cannot be controlled.	
Crustacea	85	В	В	Myriophyllum stable.	
Fish	85	в	A	Prolonged WL drop has reduced habitat for key elements of the fish assemblage. This habitat loss in most pronounced in the Main Basin. These species remaining in the system and will recover should WL recover. The lake borders a World Heritage Site and is unique in the fish fauna assemblage it supports. This includes relict estuarine species, species of conservation significance, and species which are rare and threatened in KZN and SA.	
Herpetofauna	65	С	А	Poaching can be stopped.	
Semi-aquatic mammals	65	С	А	Poaching can be stopped.	
Birds*	80	В	Α	Protected area; unique habitat; refuge function.	

 Table 3.7
 Present Ecological Status of all components at EWR MB

* Birds were assessed for the overall Lake and not individual Basins/ Arms

In order to calculate PES the scores for Molluscs/ Crustacea and also Semi-aquatic mammals/ herpetofauna were first combined before averaging the scores across the disciplines (Table 3.8).

 Table 3.8
 Overall Present Ecological Status for EWR MB

COMPONENT	INDIVIDUAL SCORE	OVERALL SCORE	OVERALL PES	
Water quality	97			
Vegetation	70.7		B/C	
Molluscs/Crustacea	77.5	70.04		
Fish	85	79.04		
Herpetofauna/Semi-aquatic mammals	65			
Birds*	80			

* Birds were assessed for the overall Lake and not individual Basins/ Arms

3.2 EWR Zone – Northern Arm (NA)

Figure 3.2 shows the location of the Northern Arm in relation to Lake Sibaya and photographs of some of the areas that were sampled for the study.

Figure 3.2 Northern Arm

3.2.1 Data availability

The data available at EWR NA are summarised in Table 3.9.

Table 3.9 Data available at EWR NA

COMPONENT	DATA AVAILABILITY	REFERENCES	CONFIDENCE
Water quality	2010: Sediment accumulation (TC, TN, TP) & DDT.	Humphries and Benitez-Nelson, 2013; Humphries, 2013.	1
Vegetation	Site visit (14 July 2015); collection of species height / depth relative to WL and vegetation assessment.	This report.	5
Molluscs	Detailed studies by Boltt and other researchers from Rhodes University in the 1970s (Hart 1979 & 1980) give species and abundances per habitat and at different depths. Complementing this is Appleton's work on snails and Miranda's work on <i>Tarebia</i> .	Hart (1979 & 80); Appleton (1977 & 1980); Miranda (2012 & 2014).	4
Crustacea	Detailed studies by Boltt and other researchers from Rhodes University in the 1970s (Hart 1979 & 1980) give species and abundances per habitat and at different depths.	Hart (1979 & 80).	4

COMPONENT	DATA AVAILABILITY	REFERENCES	CONFIDENCE
Fish	Good information on biology of selected species in Lake Sibaya. No site specific data. No quantitative data on abundances.	Bowen SH (1976). Bowen SH (1978). Bruton MN (1979). Bruton MN (1979). Bruton MN (1980) Bruton MN and Allanson BR (1974).	3
Herpetofauna	Count data and nest censuses from EKZNW, and Combrink et al. (2011) which provide census data and the decline of crocodiles in Lake Sibaya	EKZNW census files; Combrink et al. 2011	5
Birds*	Counts of top 15 species for 1970 and 1976 (Bruton 1979); Bird checklist by Cyrus et al. (1980); Brief description by Bruton (1980); Phil Hockey count Dec 1981 (Ryan et al. 1988); Summer and winter CWAC counts 1992-2014; Field notes (R Taylor) Jul 2015.	See report	5
Semi-aquatic mammals	Count data and life history parameters from EKZNW, and Taylor (2013) which provide census data and the decline of hippopotamuses in Lake Sibaya	EKZNW; Taylor 2013	5

3.2.2 Ecological importance and sensitivity

The EIS of EWR NA, with motivations, is provided in Table 3.10.

Table 3.10	EIS of EWR NA

DETERMINANTS	SCORE	REASONING	CONFIDENCE
BIOTA	(0-4)		
Rare & endangered (range: 4=very high - 0 = none)	3.75	Wolffellia denticulata listed as VU D2 (http://redlist.sanbi.org/species.php?species=3873-1); last recorded at Sibaya 1973 by A.A. Mauve (http://sibis.sanbi.org/faces/SearchSpecimen/Specime nDetails.jsp?1=1); not recorded at site but is possibly present. <i>Silhouettea sibayi</i> is listed as Endangered on the IUCN Red List of Threatened Species. Many other species are IUCN listed, albeit in the "Least Concern" category. Hippo and crocodiles are red data species. Presence of 7 bird species that are on the regional red data list (2014), though none in very large numbers except occasionally.	4.33
Unique (endemic, isolated, etc.) (range: 4=very high - 0 = none)	3.00	<i>Cyperus natalensis</i> restricted to area; falls within Maputaland Centre of plant endemism (Van Wyk & Smith, 2001) but mostly applicable to species not associated with the Lake; isolated distribution of swamp forest associated with western arm. Several species are endemic to southern Africa. <i>Aplocheilichthys myaposae</i> occurs in KZN only, so is highly localised. This lake is also unique in its fish assemblage having relict remnants of an estuarine assemblage, despite being isolated from the sea since	4.33

DETERMINANTS	SCORE	REASONING	CONFIDENCE
		the Pleistocene. Estuarine relic molluscs, crustacea and herpetofauna. No, though several bird species at the edge of range in SA.	
Intolerant (flow & flow related water quality) (range: 4=very high - 0 = none)	2.50	Aquatic and emergent macrophytes highly dependent on lake level High water levels and connectivity with adjacent swamps, pans and wetlands are needed for several species of fishes. This includes facultative use by two species of catfish (<i>Clarias theodorae</i> and to a lesser extent <i>Clarias gariepinus</i>). Climbing perch (<i>Ctenopoma multispine</i>) have a more obligative need for reaching these peripheral habitats for breeding. Shallow, gentle sloping shelves are needed for several other species as well, including those that are numerically dominant. These habitats (and therefore these fauna) are sensitive to lake water level fluctuations. Most of the herpetofauna, crustacea, molluscs and mammal species are 'generalists'. Several species have relatively narrow habitat requirements.	3.33
Species/taxon richness (range: 4=very high - 1=low/marginal)	3.00	Falls within the Maputaland-Pondoland region of plant endemism with app. 7000 taxa (Van Wyk & Smith, 2001). Species richness of KZN freshwater fishes is naturally low (south of the Pongola). This lake has elevated species richness because of the relict estuarine component in its fish fauna. There is a tropical richness, but reduced a bit by the isolation causing an 'island' effect.	4.00
HABITATS	(0-4)		
Diversity of types (4=Very high - 1=marginal/low)	3.00	Aquatic, littoral, pan adjacent and off-lake wetland, open sandy beach areas, protected coves, stream inflow areas, coastal dune, swamp forest. This is one of very few coastal lakes in the country. It is the only system that has lost its estuarine connection, but which retains a relict estuarine fauna. The high diversity of submerged, emergent and floating plants, together with connect pans, swamps and wetlands, provides a very high diversity of freshwater habitats not found anywhere else at one locality. High diversity of habitats, reduced by the even morphology of the basin, few rocks and consistent sized sand grains.	4.00
Refugia (4=Very high - 1=marginal/low)	2.75	Refugia for smaller similar systems during extended drought. This is one of the few (and possibly only) permanent deep freshwater bodies on the Maputaland flats. It becomes a refuge during drought and centre of distribution for fishes that inhabit pans, swamps and wetlands on the wider coastal plain. The embayments are very important to the mammals, herpetofauna, crustacea and molluscs.	4.00
Sensitivity to flow changes (4=Very high - 1=marginal/low)	2.75	Large ground water dependant system more resilient to change. The main habitat types, gentle banks and shallow water with submerged vegetation, are susceptible to lake water level drop. Because of the systems morphology these habitats are lost very rapidly below critical water levels. Affected by water level changes	3.67
Sensitivity to flow related water quality changes	2.40	Large ground water dependant system more resilient to change. At very low levels saltwater intrusion might occur, which will result in the loss of (vegetated)	3.75

	SCODE		
	SCORE	REASONING	CONFIDENCE
(4=Very nign -		habitat as well as primary freshwater elements of the	
1=marginal/low)		tish assemblage. Most species would be affected.	
		Lake water levels would need to drop below sea level	
		for this to occur. At levels above this water quality	
		should remain suitable for all fishes in the lake. Flow	
		translates into Water level in these lakes. WQ	
		parameter influenced by lake level is EC. The	
		dystrophic water is easily enriched with nutrients.	
		Occurs within a string of such systems along the	
		coastline but not likely to be important for plant species	
		migration. The lake itself is not used as a migration	
		route, but high water levels do facilitate migration to	
Migration		adjacent swamps, pans and wetlands for several	
route/corridor		species of fishes. Lake arms and smaller basins have	
(instream &	2.00	greater proximity to a higher area of such peripheral	3 33
riparian, range:	2.00	wetlands and are therefore more important than the	0.00
4=very high - 0 =		Main Basin in this regard. These include two species of	
none)		catfish (Clarias theodorae and to a lesser extent	
		Clarias gariepinus) as well as climbing perch	
		(Ctenopoma multispine). This is an endorheic system -	
		but hippopotami, crocodiles and birds do move	
		between waterbodies.	
		Within iSimangaliso and largest freshwater lake in	
		southern Africa, RAMSAR site. This is a unique lake in	
Importance of		that its biota retains a relict fauna of a geological past.	
conservation &		It remains in good condition and its catchment can still	
natural areas	4.00	be managed to protect its ecological integrity as a	4.33
(range, 4=very		relatively pristine freshwater lake adjacent to a World	
high - 0=verv low)		Natural heritage site. This is a Ramsar and World	
J J J J J J J J J J		Heritage Site - the highest conservation rating that can	
		be given.	
MEDIAN OF		· · ·	
DETERMINANTS	3		
EISC	HIGH		

3.2.3 Reference conditions

The expected reference condition at EWR NA is described in Table 3.11.

Table 3.11 Reference condition at EWR NA

Component	Reference condition	Confidence	References
Water quality	DO, Turbidity and Conductivity as Present. DIN ~0.07 mg/l (deeper waters) and 0.1 mg/l (shallower waters, reflecting some input from peripheral vegetation under natural); DIP ~0.02 mg/l.	2	Expert judgement based on available data; De Villiers & Thiart, 2007.
Vegetation	The aquatic zone is expected to be well developed, in keeping with lacustrine environments, with species distribution varying according to water clarity (which affects light penetration) and the degree of wind and wave disturbance. In shallow, more secluded areas Water Lilies (<i>Nymphaea</i> <i>nouchali var. caerulea</i>) and Broad-leaved	4	Mucina & Rutherford, 2006; Allanson, 1979; Ricky Taylor, per com.

Component	Reference condition	Confidence	References
	Pondweed (Potamogeton schweinfurthii) are		
	expected to be highly abundant, with Water		
	Hornwort (Ceratophyllum demersum var.		
	demersum) in quiet deeper waters. In more		
	exposed areas where wind and wave action		
	is more frequent and vigorous, the aquatic		
	zone is more likely to be dominated by		
	Fennel-leaved Pondweed (Stuckenia		
	pectinatus) and Saw Weed (Najas marina		
	subsp. armata). Spiked Water-milfoil		
	(Myriophyllum spicatum), native to Europe,		
	Asia and North Africa, is expected to be		
	absent. Emergent macrophytes in the littoral		
	zone are expected to be well developed in		
	most areas not exposed to prevailing winds.		
	Along most shores the dominant plant form is		
	likely to be sedges and reeds, (notably		
	Schoenoplectus scirpoides, Phragmites		
	australis and Eleocharis acutangula) which		
	should variously span the transition area from		
	shoreline to the aquatic environment, growing		
	well into the water and mixing with aquatic		
	zone species. In sheltered areas, species		
	more sensitive to wind and wave action		
	(including Typha capensis, Cyperus papyrus,		
	C. prolifer, Ludwigia octovalvis and		
	Hydrocotyle bonariensis) should be abundant		
	With 100% (or near 100%) aerial coverage.		
	Allen and woody species would be absent		
	from this zone. Shoreline macrophytes are		
	those species that occur between the		
	emergent macrophytes and the tree line and		
	along open exposed beach areas where		
	those occur. This zone should be dominated		
	C natalonsis lungus oxycarpus		
	C. Indialerisis, Juricus Oxycarpus,		
	cylindrica) and should be free of alien or		
	woody species. The tree line is where woody		
	vegetation starts and should characteristically		
	be in keeping with the surrounding vegetation		
	type. This is mostly Manutaland Coastal Belt		
	(with some distict patches of Northern		
	Coastal Forest) The beginning of this zone		
	should remain clearly defined and usually		
	indicates a level beyond which inudation is		
	rare. Some encroachment of the shoreline		
	zone by woody species is natural but should		
	be transient and reduced by lake level		
	fluctuations. High woody aerial cover, notably		
	S. cordatum, should dominate this zone.		
Molluscs	Same condition with no Tarebia.	5	Miranda (2012)
Crustacoo	Before habitat alteration by Myriophyllum - no	3	
	info available of this condition.	<u>з</u>	
	Part of an oligo-mesotrophic, endorheic lake		
Fish	with seasonally connected swamps and	ц Ц	Allanson BP (1070)
	shallow pans. Large, deep basin with		$\neg \ a\ _{\partial U} = D \cap (\partial \partial).$
	naturally fluctuating water level. Good water		

Component	Reference condition	Confidence	References
	quality characterised by well oxygenated, clear waters with naturally elevated chloride and calcium concentrations. At high levels large areas of shallow shelf areas are used and fish gain access to flooded marginal habitats and allocthonous carbon inputs. Shallow areas become increasingly wave washed with decreasing water level and during drought are poor fish habitat because aquatic vegetation has died back and been impacted by waves, summer day time water temperatures are too high for adults of several species, and detritus and microphytobenthic beds (diatoms) are churned up.		
Herpetofauna	There were more crocodiles present.	5	EKZNW census data
Birds*	The avifauna was dominated by Reed & Whitebreasted Cormorants. Other common species included three species of kingfishers, African Fish Eagles (7prs), several large herons, African Darter and Greyheaded Gull. The area was an important breeding area for Whitefronted Plover, and supported few other waders. ;The sheltered bays had a distinctive fauna characterised by African Jacana, Black Crake, African Purple Gallinule and Common Moorhen ; Little Grebe (=Dabchick) was the most common species found in open water areas.	3	Bruton (1979)
Semi-aquatic mammals	There were many more hippopotami present.	5	EKZNW census data

3.2.4 **Baseline ecological condition**

This section summarises the outcome of the discipline specific Ecoclassification assessments, which are provided in Volume 3: specialist reports.

3.2.4.1 Causes and sources

Vegetation

Causes and sources for the Present Ecological State at EWR NA are summarised in Table 3.12.

zone by M. spicatum.

COMPONENT	CAUSES	SOURCES	FLOW OR NON-FLOW RELATED	CONFIDENCE
Water quality	DDT contamination in muddy extremities.	Spraying of DDT for malaria.	Non-flow	2
Manatation	Altered species	Dominance of aquatic		

Table 3.12 Causes and sources of PES at EWR NA

composition in the

aquatic zone.

Non-flow

5

COMPONENT CAUSES		SOURCES	FLOW OR NON-FLOW RELATED	CONFIDENCE
	Altered species composition in the shoreline vegetation.	Encroachment of zone by woody species (<i>S. cordatum</i>).	Flow	5
	Reduced non-woody cover in shoreline vegetation.	Grazing and trampling pressure of livestock coupled with increasing water stress due to receding lake levels.	Both	3
Molluscs	Invasion of an alien species (Tarebia).		Non-flow	5
Crustacea	Habitat altered by the invasion of an alien species (Myriophyllum).		Non-flow	3
Fish	Lake water level reductions.	Surface water and groundwater abstraction.	Flow	5
Herpetofauna	Severe poaching (of crocodiles and nests) has decimated numbers.		Non-flow	5
Birds*	Water level, emergent vegetation, shallow backwater areas, exposed shoreline etc.	Various.	Largely flow related	4
Semi-aquatic mammals	Severe poaching of hippopotami has decimated numbers.		Non-flow	5

3.2.4.2 Trends

Trends in the Present Ecological Status for all components of EWR NA are summarised below in Table 3.13.

COMPONENT	ABSENT/POSITIVE/NEGATIVE	CONFIDENCE
Water quality	Absent/Negative.	2
Vegetation	Stable for alien species; negative for receding lake levels.	4
Molluscs	Negative - the Tarebia are having an increasing impact.	3
Crustacea	Absent - system has now stabilised since the introduction of <i>Myriophyllum</i> (>50 years ago) that altered habitat.	3
Fish	Negative.	5
Herpetofauna	Negative - Crocodile numbers declining rapidly.	5
Birds*	Negative for Cormorants, darters, king fishers and birds of prey which have decreased; positive for other species as they have increased with recent drying.	4
Semi-aquatic mammals	Negative - Hippopotamus numbers declining rapidly.	5

Table 3.13 Trends in PES for EWR NA

* Birds were assessed for the overall Lake and not individual Basins/ Arms

3.2.5 Ecostatus

The Present Ecological Status and the Recommended Ecological Category of each component at EWR NA is summarised below in Table 3.14.

COMPONENT	% EC	EC	REC	OF SIGNIFICANCE/REASON FOR REC
Water quality	94	А	А	Water quality resetting mechanisms (e.g. flushing) in lakes are very weak, thus maintain high WQ.
Vegetation	80.2	B/C	В	The EIS of the area is HIGH so the system should be managed towards a B.
Molluscs	70	С	С	Tarebia cannot be controlled.
Crustacea	85	В	В	Myriophyllum stable.
Fish	90	A	A	Prolonged WL drop has reduced habitat for key elements of the fish assemblage. This habitat loss in less pronounced in the Northern Arm compared to the lake's basins. Of importance in the Northern Arm is its connectivity to swamps and wetlands which are important as breeding areas which climbing perch migrate to during the wet season. Fish species remaining in the system and will recover should WL recover. The lake is borders a World Heritage Site amd is unique in the fish fauna assemblage it supports. This includes relict estuarine species, species of conservation significance, and species which are rare and threatened in KZN and SA.
Herpetofauna	65	С	А	Poaching can be stopped.
Birds* 80 B A		А	Protected area; unique habitat; refuge function.	
Semi-aquatic mammals	65	С	А	Poaching can be stopped.

 Table 3.14
 Present Ecological Status of all components at EWR NA

* Birds were assessed for the overall Lake and not individual Basins/ Arms

In order to calculate PES the scores for Molluscs/ Crustacea and also Semi-aquatic mammals/ herpetofauna were first combined before averaging the scores across the disciplines (Table 3.8).

Table 3.15	Overall Present Ecological Status for EWR NA
------------	---

COMPONENT	INDIVIDUAL SCORE	OVERALL SCORE	OVERALL PES
Water quality	94		
Vegetation	80.2		
Molluscs/Crustacea	77.5	01 01	D/C
Fish	90	01.34	D/C
Herpetofauna/Semi-aquatic mammals	65		
Birds*	80		

* Birds were assessed for the overall Lake and not individual Basins/ Arms

3.3 EWR Zone – Western Arm (WA)

Figure 3.3 shows the location of the Western Arm in relation to Lake Sibaya. The photographs indicate the exposure of rich organic material that has become exposed as a result of receding water levels.

Low water levels exposing organic deposits

Figure 3.3 Western Arm

3.3.1 Data availability

The data available at EWR WA are summarised in Table 3.16.

Table 3.16 Data available at EWR WA

COMPONENT	DATA AVAILABILITY	REFERENCES	CONFIDENCE
Water quality	2010: Sediment accumulation (TC, TN, TP) & DDT; Jul 2015: EC, cations/anions, pH, Turbidity, DO, DIN, DIP.	Humphries and Benitez-Nelson, 2013; Humphries, 2013; This study.	2
Vegetation	Site visit (15 July 2015); collection of species height / depth relative to WL and vegetation assessment.	This report	5
Molluscs	Detailed studies by Boltt and other researchers from Rhodes University in the 1970s (Hart 1979 & 1980) give species and abundances per habitat and at different depths. Complementing this is Appleton's work on snails and Miranda's work on <i>Terebia</i> .	Hart (1979 & 80); Appleton (1977 & 1980); Miranda (2012 & 2014)	4
Crustacea	Detailed studies by Boltt and	Hart (1979 & 80)	4

COMPONENT	DATA AVAILABILITY	REFERENCES	CONFIDENCE
	other researchers from Rhodes University in the 1970s (Hart 1979 & 1980) give species and abundances per habitat and at different depths.		
Fish	Good information on biologies of selected species in Lake Sibaya. No site specific data. No quantitative data on abundances.	Bowen SH (1976). Bowen SH (1978). Bruton MN (1979). Bruton MN (1979). Bruton MN (1980). Bruton MN and Allanson BR (1974).	3
Herpetofauna	Count data and nest censuses from EKZNW, and Combrink et al. (2011) which provide census data and the decline of crocodiles in Lake Sibaya.	EKZNW census files; Combrink et al. 2011.	5
Birds*	Counts of top 15 species for 1970 and 1976 (Bruton 1979); Bird checklist by Cyrus et al. (1980); Brief description by Bruton (1980); Phil Hockey count Dec 1981 (Ryan et al. 1988); Summer and winter CWAC counts 1992- 2014; Field notes (R Taylor) Jul 2015.	See report.	5
Semi-aquatic mammals	Count data and life history parameters from EKZNW, and Taylor (2013) which provide census data and the decline of hippopotami in Lake Sibaya	EKZNW; Taylor 2013.	5

3.3.2 Ecological importance and sensitivity

The EIS of EWR WA, with motivations, is provided in Table 3.17.

Table 3.17 EIS of EWR WA

DETERMINANTS	SCORE	REASONING	CONFIDENCE
BIOTA	(0-4)		
Rare & endangered (range: 4=very high - 0 = none)	3.75	<i>Wolffellia denticulata</i> listed as VU D2 (http://redlist.sanbi.org/species.php?species=3873- 1); last recorded at Sibaya 1973 by A.A. Mauve (http://sibis.sanbi.org/faces/SearchSpecimen/Specim enDetails.jsp?1=1); not recorded at site but is possibly present. <i>Silhouettea sibayi</i> is listed as Endangered on the IUCN Red List of Threatened Species. Many other species are IUCN listed, albeit in the "Least Concern" category. Hippopotami and crocodiles are red data species. Presence of 7 bird species that are on the regional red data list (2014), though none in very large numbers except occasionally.	4.33

DETERMINANTS	SCORE	REASONING	CONFIDENCE
Unique (endemic, isolated, etc.) (range: 4=very high - 0 = none)	3.00	<i>Cyperus natalensis</i> restricted to area; falls within Maputaland Centre of plant endemism (Van Wyk & Smith, 2001) but mostly applicable to species not associated with the Lake; isolated distribution of swamp forest associated with western arm. Several species are endemic to southern Africa. <i>Aplocheilichthys myaposae</i> occurs in KZN only, so is highly localised. This lake is also unique in its fish assemblage having relict remnants of an estuarine assemblage, despite being isolated from the sea since the Pleistocene. Estuarine relic molluscs, crustacea and herptofauna. No, though several bird species at the edge of range in SA.	4.33
Intolerant (flow & flow related water quality) (range: 4=very high - 0 = none)	2.50	Aquatic and emergent macrophytes highly dependent on lake level High water levels and connectivity with adjacent swamps, pans and wetlands are needed for several species of fishes. This includes facultative use by two species of catfish (<i>Clarias theodorae</i> and to a lesser extent <i>Clarias gariepinus</i>). Climbing perch (<i>Ctenopoma multispine</i>) have a more obligative need for reaching these peripheral habitats for breeding. Shallow, gentle sloping shelves are needed for several other species as well, including those that are numerically dominant. These habitats (and therefore these fauna) are sensitive to lake water level fluctuations. Most of the herpetofauna, crustacea, molluscs and mammal species are 'generalists'. Several species have relatively narrow habitat requirements. Falls within the Maputaland-Pondoland region of plant endemism with app. 7000 taxa (Van Wyk &	3.33
Species/taxon richness (range: 4=very high - 1=low/marginal)	3.00	Smith, 2001). Species richness of KZN freshwater fishes is naturally low (south of the Pongola). This lake has elevated species richness because of the relict estuarine component in its fish fauna. There is a tropical richness, but reduced a bit by the isolation causing an 'island' effect.	4.00
HABITATS	(0-4)	Aquatic, littoral, pan adjacent and off-lake wetland,	
Diversity of types (4=Very high - 1=marginal/low)	3.00	open sandy beach areas, protected coves, stream inflow areas, coastal dune, swamp forest This is one of very few coastal lakes in the country. It is the only system that has lost its estuarine connection, but which retains a relict estuarine fauna. The high diversity of submerged, emergent and floating plants, together with connect pans, swamps and wetlands, provides a very high diversity of freshwater habitats not found anywhere else at one locality. High diversity of habitats, reduced by the even morphology of the basin, few rocks and consistent sized sand grains.	4.00
Refugia (4=Very high - 1=marginal/low)	2.75	Refugia for smaller similar systems during extended drought. This is one of the few (and possibly only) permanent deep freshwater bodies on the Maputaland flats. It becomes a refuge during drought and centre of distribution for fishes that inhabit pans, swamps and wetlands on the wider coastal plain. The embayments are very important to the	4.00

DETERMINANTS	SCORE	REASONING	CONFIDENCE
		mammals, herpetofauna, crustacea and molluscs.	
Sensitivity to flow changes (4=Very high - 1=marginal/low)	2.75	Large ground water dependant system more resilient to change. The main habitat types, gentle banks and shallow water with submerged vegetation, are susceptible to lake water level drop. Because of the systems morphology these habitats are lost very rapidly below critical water levels. Affected by water level changes.	3.67
Sensitivity to flow related water quality changes (4=Very high - 1=marginal/low)	2.20	Large ground water dependant system more resilient to change. At very low levels saltwater intrusion might occur, which will result in the loss of (vegetated) habitat as well as primary freshwater elements of the fish assemblage. Most species would be affected. Lake water levels would need to drop below sea level for this to occur. At levels above this water quality should remain suitable for all fishes in the lake. Flow translates into Water level in these lakes. WQ parameter influenced by lake level is EC The dystrophic water is easily enriched with nutrients. Especially the case for Mseleni enrichment.	3.75
Migration route/corridor (instream & riparian, range: 4=very high - 0 = none)	2.00	Occurs within a string of such systems along the coastline but not likely to be important for plant species migration. The lake itself is not used as a migration route, but high water levels do facilitate migration to adjacent swamps, pans and wetlands for several species of fishes. Lake arms and smaller basins have greater proximity to a higher area of such peripheral wetlands and are therefore more important than the Main Basin in this regard. These include two species of catfish (<i>Clarias theodorae</i> and to a lesser extent <i>Clarias gariepinus</i>) as well as climbing perch (<i>Ctenopoma multispine</i>). This is an endorheic system - but hippopotami, crocodiles and birds do move between waterbodies.	3.33
Importance of conservation & natural areas (range, 4=very high - 0=very low)	4.00	Within iSimangaliso and largest freshwater lake in southern Africa, a RAMSAR site. This is a unique lake in that its biota retains a relict fauna of a geological past. It remains in good condition and its catchment can still be managed to protect its ecological integrity as a relatively pristine freshwater lake adjacent to a World Natural heritage site. This is a Ramsar and World Heritage Site - the highest conservation rating that can be given.	4.33
MEDIAN OF DETERMINANTS	3		
EISC	HIGH		

3.3.3 Reference conditions

The expected reference condition at EWR WA is described in Table 3.18.

Component	Reference condition	Confidence	References
Water quality	DO, Turbidity and Conductivity as Present. DIN ~0.07 mg/l (deeper waters) and 0.1 mg/l (shallower waters, reflecting some input from peripheral vegetation under natural); DIP ~0.02 mg/.	2	Expert judgement based on available data; De Villiers & Thiart, 2007.
Vegetation	The aquatic zone is expected to be well developed, in keeping with lacustrine environments, with species distribution varying according to water clarity (which affects light penetration) and the degree of wind and wave disturbance. In shallow, more secluded areas Water Lilies (<i>Nymphaea</i> <i>nouchali var. caerulea</i>) and Broad-leaved Pondweed (<i>Potamogeton schweinfurthii</i>) are expected to be highly abundant, with Water Hornwort (<i>Ceratophyllum demersum var.</i> <i>demersum</i>) in quiet deeper waters. In more exposed areas where wind and wave action is more frequent and vigorous, the aquatic zone is more likely to be dominated by Fennel-leaved Pondweed (<i>Stuckenia</i> <i>pectinatus</i>) and Saw Weed (<i>Najas marina</i> <i>subsp. armata</i>). Spiked Water-milfoil (<i>Myriophyllum spicatum</i>), native to Europe, Asia and North Africa, is expected to be absent. Emergent macrophytes in the littoral zone are expected to be well developed in most areas not exposed to prevailing winds. Along most shores the dominant plant form is likely to be sedges and reeds, (notably <i>Schoenoplectus scirpoides, Phragmites</i> <i>australis</i> and <i>Eleocharis acutangula</i>) which should variously span the transition area from shoreline to the aquatic environment, growing well into the water and mixing with aquatic zone species. In sheltered areas, species more sensitive to wind and wave action (including <i>Typha capensis, Cyperus papyrus,</i> <i>C. prolifer, Ludwigia octovalvis</i> and <i>Hydrocotyle bonariensis</i>) should be abundant with 100% (or near 100%) aerial coverage. Alien and woody species would be absent from this zone. Shoreline macrophytes are those opecies: that occur between the emergent macrophytes and the tree line and along open exposed beach areas where those occur. This zone should be dominated by a mixture of grasses and sedges (notably <i>C. natalensis, Juncus oxycarpus,</i> <i>Dactyloctenium geminatum</i> and <i>Imperata</i> <i>cylindrica</i>) and should befree of alien or woody species. The tree line is where woody vegetation starts and should characteristically be in keeping with the	4	Mucina & Rutherford, 2006; Allanson, 1979; Ricky Taylor, per com.

Table 3.18	Reference	condition a	at EWR WA

Component	Reference condition	Confidence	References
	Coastal Forest). The beginning of this zone		
	should remain clearly defined and usually		
	indicates a level beyond which inundation is		
	rare. Some encroachment of the shoreline		
	zone by woody species is natural but should		
	be transient and reduced by lake level		
	fluctuations. This zone should be dominated		
	by high woody aerial cover, notably S.		
	cordatum.		
Molluscs	Same condition with no Tarebia.	5	Miranda (2012)
Cructacoa	Before habitat alteration by <i>Myriophyllum</i> - no	2	
Crustacea	information available of this condition.	3	
	Part of an oligo-mesotrophic, endorheic lake		
	with seasonally connected swamps and		
	shallow pans. Large, deep basin with		
	naturally fluctuating water level. Good water		
	quality characterised by well oxygenated,		
	clear waters with naturally elevated chloride		
	and calcium concentrations. At high levels		Allanson BR (ed)
	large areas of shallow shelf areas are used		(1979). Lake
	and fish gain access to flooded marginal		Sibaya.
Fish	habitats and allocthonous carbon inputs.	Н	Monographiae
	Shallow areas become increasingly wave		Biologicae 36: 1-
	washed with decreasing water level and		394. Dr W. Junk
	during drought are poor fish habitat because		Publishers, The
	aquatic vegetation has died back and been		Hague
	impacted by waves, summer day time water		
	temperatures are too high for adults of		
	several species, and detritus and		
	microphytobenthic beds (diatoms) are		
	churned up.		
		с.	EKZNW census
Herpetofauna	A greater abundance of crocodiles.	5	data
	The avifauna was dominated by Reed &		
	Whitebreasted Cormorants. Other common		
	species included three species of kingfishers,		
	African Fish Eagles (7prs), several large		
	herons, African Darter and Greyheaded Gull.		
	The area was an important breeding area for		
Birds*	Whitefronted Plover, and supported few other	3	Bruton (1979)
	waders. The sheltered bays had a distinctive		
	fauna characterised by African Jacana. Black		
	Crake, African Purple Gallinule and Common		
	Moorhen: Little Grebe (=Dabchick) was the		
	most common species found in open water		
	areas.		
Semi-aquatic		_	EKZNW census
mammals	A greater abundance of hippopotami.	5	data

3.3.4 Baseline ecological condition

This section summarises the outcome of the discipline specific Ecoclassification assessments, which are provided in Volume 3: specialist reports.

3.3.4.1 Causes and sources

Causes and sources for the Present Ecological State at EWR WA are summarised in Table 3.19.

Table 3.19	Causes and sources of PES at EWR WA	

Component	Causes	Sources	Flow or non-flow related	Confidence
Water quality	DIN/DIP enrichment in shallow waters; DDT contamination in muddy extremities.	Increased rural/forestry development; Spraying of DDT for malaria.	Non-flow	2
	Altered species composition in the aquatic zone.	Dominance of aquatic zone by M. spicatum	Non-flow	5
Vegetation	Altered species composition in the shoreline vegetation.	Encroachment of zone by woody species (<i>S. cordatum</i>).	Flow	5
	Reduced non-woody cover in shoreline vegetation and woody vegetation beyond tree line.	Agricultural activities and human pressure.	Non-flow	3
Molluscs	Invasion of an alien species (Tarebia).		Non-flow	5
Crustacea	Habitat altered by the invasion of an alien species (<i>Myriophyllum</i>).		Non-flow	3
Fish	Lake water level reductions	Surface water and groundwater abstraction.	Flow	5
Herpetofauna	Severe poaching (of crocodiles and nests) has decimated numbers.		Non-flow	5
Birds*	Water level, emergent vegetation, shallow backwater areas, exposed shoreline, etc.	Various.	Largely flow related	4
Semi-aquatic mammals	Severe poaching of hippopotamuses has decimated numbers.		Non-flow	5

* Birds were assessed for the overall Lake and not individual Basins/ Arms

3.3.4.2 Trends

Trends in the Present Ecological Status for all components of EWR WA are summarised below in Table 3.20.

COMPONENT	ABSENT/POSITIVE/NEGATIVE	CONFIDENCE
Water quality	Negative	2
Vegetation	Stable for alien species; negative for receding lake levels	4
Molluscs	Negative - the Tarebia are having and increasing impact.	3
Crustacea	Absent - system has now stabilised since the introduction of <i>Myriophyllum</i> (>50 years ago) which altered habitat.	3
Fish	Negative.	5
Herpetofauna	Negative - Crocodile numbers declining rapidly.	5
Birds*	Negative for Cormorants, darters, kingfishers and birds of prey which have decreased; Positive for other species as they have increased with recent drying.	4
Semi-aquatic mammals	Negative - Hippo numbers still declining rapidly.	5

Table 3.20Trends in PES for EWR WA

* Birds were assessed for the overall Lake and not individual Basins/ Arms

3.3.5 Ecostatus

The Present Ecological Status and the Recommended Ecological Category of each component at EWR WA is summarised below in Table 3.21.

COMPONENT	% EC	EC	REC	OF SIGNIFICANCE/REASON FOR REC
Water quality	94	А	А	Water quality resetting mechanisms (e.g. flushing) in lakes are very weak, thus maintain high WQ.
Vegetation	77.2	С	В	The EIS of the area is HIGH so the system should be managed towards a B.
Molluscs	70	С	С	Tarebia cannot be controlled.
Crustacea	85	В	В	Myriophyllum stable.
Fish	95	A	A	Prolonged WL drop has reduced habitat for key elements of the fish assemblage. This habitat loss in less pronounced in the Western Arm compared to the lake's basins. Of importance in the Northern Arm is its connectivity to swamps and wetlands which are important as breeding areas which climbing perch migrate to during the wet season. Fish species remain in the system and will recover should WL recover. The lake is borders a World Heritage Site and is unique in the fish fauna assemblage it supports. This includes relict estuarine species, species of conservation significance, and species which are rare and threatened in KZN and SA.
Herpetofauna	65	С	А	Poaching can be stopped.
Birds*	80	В	Α	Protected area; unique habitat; refuge function.
Semi-aquatic mammals	65	С	А	Poaching can be stopped.

Table 3.21 Present Ecological Status of all components at EWR W

* Birds were assessed for the overall Lake and not individual Basins/ Arms

In order to calculate PES the scores for Molluscs/ Crustacea and also Semi-aquatic mammals/ herpetofauna were first combined before averaging the scores across the disciplines (Table 3.22).

COMPONENT	INDIVIDUAL SCORE	OVERALL SCORE	OVERALL PES
Water quality	94		
Vegetation	77.2		
Molluscs/Crustacea	77.5	01 71	D/C
Fish	95	01.74	D/C
Herpetofauna/Semi-aquatic mammals	65		
Birds*	80		

 Table 3.22
 Overall Present Ecological Status for EWR WA

3.4 EWR Zone - SWB

Figure 3.4 shows the location of the Southwestern Arm in relation to Lake Sibaya. The photographs indicate the exposure of rich organic material that has become exposed as a result of receding water levels.

Figure 3.4 South Western basin

3.4.1 Data availability

The data available at EWR SWB are summarised in Table 3.23.

|--|

Component	Data availability	References	Confidence
Water quality	Jul 2015: EC, cations/anions, pH, Turbidity, DO, DIN, DIP.	This study.	1
Vegetation	Site visit (15 July 2015); collection of species height / depth relative to WL and vegetation assessment.	This report.	5
Molluscs	Detailed studies by Boltt and other researchers from Rhodes University in the 1970s (Hart 1979 & 1980) give species and abundances per habitat and at different depths. Complementing this is Appleton's work on snails and Miranda's work on <i>Terebia</i> .	Hart (1979 & 80); Appleton (1977 & 1980); Miranda (2012 & 2014).	4
Crustacea	Detailed studies by Boltt and other researchers from Rhodes University in the 1970s (Hart 1979 & 1980) give species and abundances per habitat and at different depths.	Hart (1979 & 80).	4
Fish	Good information on biologies of	Bowen SH (1976).	3

_			
Component	Data availability	References	Confidence
	selected species in Lake Sibaya. No	Bowen SH (1978).	
	dete en ebundences	Bruten MN (1979).	
	data on abundances.	Bruton MN (1979).	
		Bruton MN and	
		Allanson BR (1974).	
	Count data and nest censuses from		
Hernetofauna	EKZNW, and Combrink et al. (2011)	EKZNW census files;	5
пегрекогаина	which provide census data and the	Combrink et al. 2011.	5
	decline of crocodiles in Lake Sibaya.		
Birds*	Counts of top 15 species for 1970 and 1976 (Bruton 1979); Bird checklist by Cyrus et al. (1980); Brief description by Bruton (1980); Phil Hockey count Dec 1981 (Ryan et al. 1988); Summer and winter CWAC counts 1992-2014; Field notes (R Taylor) Jul 2015.	See report.	5
Semi-aquatic mammals	Count data and life history parameters from EKZNW, and Taylor (2013) which provide census data and the decline of hippopotami in Lake Sibaya.	EKZNW; Taylor 2013.	5

3.4.2 Ecological importance and sensitivity

The EIS of EWR SWB, with motivations, is provided in Table 3.24.

Table 3.24 EIS of EWR SWB

DETERMINANTS	SCORE	REASONING	CONFIDENCE
BIOTA	(0-4)		
Rare & endangered (range: 4=very high - 0 = none)	3.75	Wolffellia denticulata listed as VU D2 (http://redlist.sanbi.org/species.php?species=3873- 1); last recorded at Sibaya 1973 by A.A. Mauve (http://sibis.sanbi.org/faces/SearchSpecimen/Speci menDetails.jsp?1=1); not recorded at site but is possibly present. <i>Silhouettea sibayi</i> is listed as Endangered on the IUCN Red List of Threatened Species. Many other species are IUCN listed, albeit in the "Least Concern" category. Hippo and crocodiles are red data species. Presence of 7 bird species that are on the regional red data list (2014), though none in very large numbers except occasionally.	4.33
Unique (endemic, isolated, etc.) (range: 4=very high - 0 = none)	3.00	<i>Cyperus natalensis</i> restricted to area; falls within Maputaland Centre of plant endemism (Van Wyk & Smith, 2001) but mostly applicable to species not associated with the Lake; isolated distribution of swamp forest associated with western arm. Several species are endemic to southern Africa. <i>Aplocheilichthys myaposae</i> occurs in KZN only, so is highly localised. This lake is also unique in its fish assemblage having relict remnants of an estuarine assemblage, despite being isolated from the sea	4.33

DETERMINANTS	SCORE	REASONING	CONFIDENCE
		since the Pleistocene. Estuarine relic molluscs, crustacea and herptofauna. No, though several bird species at the edge of range in SA.	
Intolerant (flow & flow related water quality) (range: 4=very high - 0 = none)	2.50	Aquatic and emergent macrophytes highly dependent on lake level. High water levels and connectivity with adjacent swamps, pans and wetlands are needed for several species of fishes. This includes facultative use by two species of catfish (<i>Clarias theodorae</i> and to a lesser extent <i>Clarias gariepinus</i>). Climbing perch (<i>Ctenopoma</i> <i>multispine</i>) have a more obligative need for reaching these peripheral habitats for breeding. Shallow, gentle sloping shelves are needed for several other species as well, including those that are numerically dominant. These habitats (and therefore these fauna) are sensitive to lake water level fluctuations. Most of the herpetofauna, crustacea, molluscs and mammal species are 'generalists'. Several species have relatively narrow habitat requirements.	3.33
Species/taxon richness (range: 4=very high - 1=low/marginal)	3.00	Falls within the Maputaland-Pondoland region of plant endemism with app. 7000 taxa (Van Wyk & Smith, 2001). Species richness of KZN freshwater fishes is naturally low (south of the Pongola). This lake has elevated species richness because of the relict estuarine component in its fish fauna. There is a tropical richness, but reduced a bit by the isolation causing an 'island' effect.	4.00
HABITATS	(0-4)		
Diversity of types (4=Very high - 1=marginal/low)	3.00	Aquatic, littoral, pan adjacent and off-lake wetland, open sandy beach areas, protected coves, stream inflow areas, coastal dune, swamp forest. This is one of very few coastal lakes in the country. It is the only system that has lost its estuarine connection, but which retains a relict estuarine fauna. The high diversity of submerged, emergent and floating plants, together with connect pans, swamps and wetlands, provides a very high diversity of freshwater habitats not found anywhere else at one locality. High diversity of habitats, reduced by the even morphology of the basin, few rocks and consistent sized sand grains.	4.00
Refugia (4=Very high - 1=marginal/low)	2.75	Refugia for smaller similar systems during extended drought. This is one of the few (and possibly only) permanent deep freshwater bodies on the Maputaland flats. It becomes a refuge during drought and centre of distribution for fishes that inhabit pans, swamps and wetlands on the wider coastal plain. The embayments are very important to the mammals, herpetofauna, crustacea and molluscs.	4.00
Sensitivity to flow changes (4=Very high - 1=marginal/low)	2.75	Large ground water dependant system more resilient to change. The main habitat types, gentle banks and shallow water with submerged vegetation, are susceptible to lake water level drop. Because of the systems morphology these habitats are lost very rapidly below critical water levels. Affected by water level changes.	3.67

DETERMINANTS	SCORE	REASONING	CONFIDENCE
Sensitivity to flow related water quality changes (4=Very high - 1=marginal/low)	2.40	Large ground water dependant system more resilient to change. At very low levels saltwater intrusion might occur, which will result in the loss of (vegetated) habitat as well as primary freshwater elements of the fish assemblage. Most species would be affected. Lake water levels would need to drop below sea level for this to occur. At levels above this water quality should remain suitable for all fishes in the lake. Flow translates into Water level in these lakes. WQ parameter influenced by lake level is EC. The dystrophic water is easily enriched with nutrients.	3.75
Migration route/corridor (instream & riparian, range: 4=very high - 0 = none)	2.00	Occurs within a string of such systems along the coastline but not likely to be important for plant species migration. The lake itself is not used as a migration route, but high water levels do facilitate migration to adjacent swamps, pans and wetlands for several species of fishes. Lake arms and smaller basins have greater proximity to a higher area of such peripheral wetlands and are therefore more important than the Main Basin in this regard. These include two species of catfish (<i>Clarias theodorae</i> and to a lesser extent <i>Clarias gariepinus</i>) as well as climbing perch (<i>Ctenopoma multispine</i>). This is an endorheic system - but hippopotami, crocodiles and birds do move between waterbodies.	3.33
Importance of conservation & natural areas (range, 4=very high - 0=very low)	4.00	Within iSmangaliso and largest freshwater lake in southern Africa, RAMSAR site. This is a unique lake in that its biota retains a relict fauna of a geological past. It remains in good condition and its catchment can still be managed to protect its ecological integrity as a relatively pristine freshwater lake adjacent to a World Natural heritage site. This is a Ramsar and World Heritage Site - the highest conservation rating that can be given.	4.33
MEDIAN OF DETERMINANTS	3		
EISC	HIGH		

3.4.3 Reference conditions

The expected reference condition at EWR SWB is described in Table 3.25.

Table 3.25 Reference condition at EWR SWB

COMPONENT	REFERENCE CONDITION	CONFIDENCE	REFERENCES
Water quality	DO, Turbidity and Conductivity as Present. DIN ~0.07 mg/l (deeper waters) and 0.1 mg/l (shallower waters, reflecting some input from peripheral vegetation under natural); DIP ~0.02 mg/l.	2	Expert judgement based on available data; De Villiers & Thiart, 2007.
Vegetation	The aquatic zone is expected to be well developed, in keeping with lacustrine environments, with species distribution	4	Mucina & Rutherford, 2006; Allanson, 1979;

COMPONENT			REFERENCES
	varving according to water clarity (which	CONTIDENCE	Ricky Taylor, per
	affects light penetration) and the degree of		com
	wind and wave disturbance. In shallow more		com.
	wind and wave disturbance. In Shallow, more		
	sectuded areas water Lines (Nymphaea		
	Dendwood (Detemogration ashweinfurthi) are		
	Pondweed (Polamogelon schweimultinii) are		
	expected to be highly abundant, with water		
	Hornwort (Ceratopnyllum demersum var.		
	<i>demersum</i>) in quiet deeper waters. In more		
	exposed areas where wind and wave action		
	is more frequent and vigorous, the aquatic		
	zone is more likely to be dominated by		
	Fennel-leaved Pondweed (Stuckenia		
	pectinatus) and Saw Weed (Najas marina		
	subsp. armata). Spiked Water-milfoil		
	(<i>Myriophyllum spicatum</i>), native to Europe,		
	Asia and North Africa, is expected to be		
	absent. Emergent macrophytes in the littoral		
	zone are expected to be well developed in		
	most areas not exposed to prevailing winds.		
	Along most shores the dominant plant form		
	is likely to be sedges and reeds, (notably		
	Schoenoplectus scirpoides, Phragmites		
	australis and Eleocharis acutangula) which		
	should variously span the transition area		
	from shoreline to the aquatic environment,		
	growing well into the water and mixing with		
	aquatic zone species. In sheltered areas.		
	species more sensitive to wind and wave		
	action (including Typha capensis, Cyperus		
	papyrus C prolifer Ludwigia octovalvis and		
	Hydrocotyle bonariensis) should be		
	abundant with 100% (or near 100%) aerial		
	coverage. Alien and woody species would be		
	absent from this zone. Shoreline		
	macrophytes are those species that occur		
	between the emergent macrophytes and the		
	tree line and along open exposed beach		
	areas where those occur. This zone should		
	be dominated by a mixture of grasses and		
	sedges (notably C natalensis luncus		
	ovvcarnus Dactuloctanium cominatum and		
	Imperate cylindrice) and should be free of		
	alien or woody species. The tree line is		
	where woody vegetation starts and should		
	characteristically be in keeping with the		
	currounding vogotation type. This is machine		
	Surrounding vegetation type. This is mostly		
	not a postal and Coastal Belt (with some distinct		
	paicnes of Northern Coastal Forest). The		
	beginning of this zone should remain clearly		
	defined and usually indicates a level beyond		
	which inundation is rare. Some		
	encroachment of the shoreline zone by		
	woody species is natural but should be		
	transient and reduced by lake level		
	fluctuations. High woody aerial cover,		
	notably S. cordatum, should dominate this		
	zone.		

COMPONENT	REFERENCE CONDITION	CONFIDENCE	REFERENCES
Molluscs	Condition with no Tarebia.	5	Miranda (2012)
Crustacea	Before habitat alteration by <i>Myriophyllum</i> - no info available of this condition.	3	
Fish	Part of an oligo-mesotrophic, endorheic lake with seasonally connected swamps and shallow pans. Large, deep basin with naturally fluctuating water level. Good water quality characterised by well oxygenated, clear waters with naturally elevated chloride and calcium concentrations. At high levels large areas of shallow shelf areas are used and fish gain access to flooded marginal habitats and allocthonous carbon inputs. Shallow areas become increasingly wave washed with decreasing water level and during drought are poor fish habitat because aquatic vegetation has died back and been impacted by waves, summer day time water temperatures are too high for adults of several species, and detritus and microphytobenthic beds (diatoms) are churned up.	Н	Allanson BR (1979).
Herpetofauna	There were more crocodiles present.	5	EKZNW census data
Birds*	Reed & Whitebreasted Cormorants dominated the avifauna. Other common species included three species of kingfishers, African Fish Eagles (7prs), several large herons, African Darter and Greyheaded Gull. The area was an important breeding area for Whitefronted Plover, and supported few other waders. The sheltered bays had a distinctive fauna characterised by African Jacana, Black Crake, African Purple Gallinule and Common Moorhen; Little Grebe (=Dabchick) was the most common species found in open water areas.	3	Bruton (1979)
Semi-aquatic mammals	More hippopotami were present.	5	EKZNW census data

3.4.4 Baseline ecological condition

This section summarises the outcome of the discipline specific Ecoclassification assessments, which are provided in Volume 3: specialist reports.

3.4.4.1 Causes and sources

Causes and sources for the Present Ecological State at EWR SWB are summarised in Table 3.26.

Component	Causes	Sources	Flow or non-flow related	Confidence
Water quality	DDT contamination in muddy extremities.	Spraying of DDT for malaria.	Non-flow	2
	Altered species composition in the aquatic zone.	Dominance of aquatic zone by <i>M. spicatum</i> .	Non-flow	5
Vegetation	Altered species composition in the shoreline vegetation.	Encroachment of zone by woody species (<i>S.</i> <i>cordatum</i>).	Flow	5
	Reduced non-woody cover in shoreline vegetation.	Likely thinning due to water stress from receding lake levels.	Flow	3
Molluscs	Invasion of an alien species (<i>Tarebia</i>).		Non-flow	5
Crustacea	Habitat altered by the invasion of an alien species (Myriophyllum).		Non-flow	3
Fish	Lake water level reductions.	Surface water and groundwater abstraction.	Flow	5
Herpetofauna	Severe poaching (of crocodiles and nests) has decimated numbers.		Non-flow	5
Birds*	Water level, emergent vegetation, shallow backwater areas, exposed shoreline etc.	Various	Largely flow related	4
Semi-aquatic mammals	Severe poaching of hippopotamuses has decimated numbers.		Non-flow	5

3.4.4.2 Trends

Trends in the Present Ecological Status for all components of EWR SWB are summarised below in Table 3.27.

Trends in PES for EWR SWB Table 3.27

COMPONENT	ABSENT/POSITIVE/NEGATIVE	CONFIDENCE		
Water quality	Absent/Negative.	2		
Vegetation	Stable for alien species; negative for receding lake levels.	4		
Molluscs	Negative - the Tarebia arestill having and increasing impact.	3		
Crustacea	Absent - system has now stabilised since the introduction of <i>Myriophyllum</i> (>50 years ago) which altered habitat.	3		
Fish	Negative.	5		
Herpetofauna	Negative - Crocodile numbers declining rapidly.	5		
Birds*	Negative for Cormorants, darters, kingfishers and birds of prey which have decreased; Positive for other species as they have increased with recent drying.	4		
Semi-aquatic mammals	Negative - Hippo numbers still declining rapidly.	5		
* Birds were assessed for the overall Lake and not individual Basins/ Arms				

Birds were assessed for the overall Lake and not individual Basins/ Arms

3.4.5 Ecostatus

The Present Ecological Status and the Recommended Ecological Category of each component at EWR SWB is summarised below in Table 3.28.

COMPONENT	% EC	EC	REC	OF SIGNIFICANCE/REASON FOR REC
Water quality	94	А	А	Water quality resetting mechanisms (e.g. flushing) in lakes are very weak, thus maintain high WQ.
Vegetation	80,1	B/C	В	The EIS of the area is HIGH so the system should be managed towards a B.
Molluscs	70	С	С	Tarebia cannot be controlled.
Crustacea	85	В	В	Myriophyllum stable.
Fish	90	А	А	Prolonged WL drop has reduced habitat for key elements of the fish assemblage. This habitat loss in less pronounced in this basin compared to the lake's other basins. Of importance in the South West Basin is its connectivity to wetlands which are important as breeding areas which climbing perch migrate to during the wet season. Fish species remaining in the system and will recover should WL recover. The lake is borders a World Heritage Site and is unique in the fish fauna assemblage it supports. This includes relict estuarine species, species of conservation significance, and species which are rare and threatened in KZN and SA.
Herpetofauna	65	С	A	Poaching can be stopped.
Birds*	80	В	Α	Protected area; unique habitat; refuge function.
Semi-aquatic mammals	65	С	А	Poaching can be stopped.

 Table 3.28
 Present Ecological Status of all components at EWR SWB

* Birds were assessed for the overall Lake and not individual Basins/ Arms

In order to calculate PES the scores for Molluscs/ Crustacea and also Semi-aquatic mammals/ herpetofauna were first combined before averaging the scores across the disciplines (Table 3.29).

Table 3.29	Overall Present Ecological Status for EWR SWB
------------	---

COMPONENT	INDIVIDUAL SCORE	OVERALL SCORE	OVERALL PES
Water quality	94		
Vegetation	80.1		
Molluscs/Crustacea	77.5	01 10	D/C
Fish	90	01.10	D/C
Herpetofauna/Semi-aquatic mammals	65		
Birds*	80		

* Birds were assessed for the overall Lake and not individual Basins/ Arms

3.5 **EWR Zone – Southern Basin (SB)**

Figure 3.5 shows the location of the Southern Basin in relation to Lake Sibaya. Receding water levels have exposed vast sandy areas, with decomposing vegetation and animal material.

Receding water levels exposing vegetation and small animals (molluscs)

Figure 3.5 Southern Basin

3.5.1 Data availability

The data available at EWR SB are summarised in Table 3.30.

COMPONENT	DATA AVAILABILITY	REFERENCES	CONFIDENCE
Water quality	1980-2014: EC, pH, Cations/Anions Nutrients; 2010: DDT; Jul 2015: EC, cations/anions, pH, Turbidity, DO, DIN, DIP.	DWS WQ monitoring station W7R1; Humphries, 2013; This study.	3
Vegetation	Site visit (16 July 2015); collection of species height / depth relative to WL and vegetation assessment.	This report.	5
Molluscs	Detailed studies by Boltt and other researchers from Rhodes University in the 1970s (Hart 1979 & 1980) give species and abundances per habitat and at different depths. Complementing this is Appleton's work on snails and Miranda's work on <i>Terebia</i> .	Hart (1979 & 80); Appleton (1977 & 1980); Miranda (2012 & 2014).	4
Crustacea	Detailed studies by Boltt and other researchers from Rhodes University in the 1970s (Hart 1979 & 1980) give	Hart (1979 & 80).	4

Table 3.30 Data available at EWR SB

COMPONENT	DATA AVAILABILITY	REFERENCES	CONFIDENCE
	species and abundances per habitat		
	Good information on biologies of	Bowen SH (1976).	3
Fish	selected species in Lake Sibaya. No	Bowen SH (1978).	
_	site specific data. No quantitative data	Bruton MN (1979).	
	on abundances.	Bruton MN (1979).	
		Bruton MN (1980).	
		Bruton MN and	
		Allanson BR (1974).	
Herpetofauna	EKZNW, and Combrink et al. (2011)	EKZNW census files;	5
	which provide census data and the decline of crocodiles in Lake Sibaya.	Combrink et al. 2011.	•
Birds*	Counts of top 15 species for 1970 and 1976 (Bruton 1979); Bird checklist by Cyrus et al. (1980); Brief description by Bruton (1980); Phil Hockey count Dec 1981 (Ryan et al. 1988); Summer and winter CWAC counts 1992-2014; Field notes (R Taylor) Jul 2015;	See report.	5
Semi-aquatic mammals	Count data and life history parameters from EKZNW, and Taylor (2013) which provide census data and the decline of hippopotamuses in Lake Sibaya.	EKZNW; Taylor 2013.	5

3.5.2 Ecological importance and sensitivity

The EIS of EWR SB, with motivations, is provided in Table 3.31.

DETERMINANTS	SCORE	REASONING	CONFIDENCE
BIOTA	(0-4)		
Rare & endangered (range: 4=very high - 0 = none)	3.75	Wolffellia denticulata listed as VU D2 (http://redlist.sanbi.org/species.php?species=3873- 1); last recorded at Sibaya 1973 by A.A. Mauve (http://sibis.sanbi.org/faces/SearchSpecimen/Specim enDetails.jsp?1=1); not recorded at site but is possibly present. <i>Silhouettea sibayi</i> is listed as Endangered on the IUCN Red List of Threatened Species. Many other species are IUCN listed, albeit in the "Least Concern" category. Hippo and crocodiles are red data species. Presence of 7 bird species that are on the regional red data list (2014), though none in very large numbers except occasionally.	4.33
Unique (endemic, isolated, etc.) (range: 4=very high - 0 = none)	3.00	<i>Cyperus natalensis</i> restricted to area; falls within Maputaland Centre of plant endemism (Van Wyk & Smith, 2001) but mostly applicable to species not associated with the Lake; isolated distribution of swamp forest associated with western arm. Several species are endemic to southern Africa. <i>Aplocheilichthys myaposae</i> occurs in KZN only, so is	4.33

Table 3.31 EIS of EWR SB

DETERMINANTS	SCORE	REASONING	CONFIDENCE
		highly localised. This lake is also unique in its fish assemblage having relict remnants of an estuarine assemblage, despite being isolated from the sea since the Pleistocene. Estuarine relic molluscs, crustacea and herptofauna. No, though several bird species at the edge of range in SA.	
Intolerant (flow & flow related water quality) (range: 4=very high - 0 = none)	2.50	Aquatic and emergent macrophytes highly dependent on lake level High water levels and connectivity with adjacent swamps, pans and wetlands are needed for several species of fishes. This includes facultative use by two species of catfish (<i>Clarias theodorae</i> and to a lesser extent <i>Clarias gariepinus</i>). Climbing perch (<i>Ctenopoma</i> <i>multispine</i>) have a more obligative need for reaching these peripheral habitats for breeding. Shallow, gentle sloping shelves are needed for several other species as well, including those that are numerically dominant. These habitats (and therefore these fauna) are sensitive to lake water level fluctuations. Most of the herpetofauna, crustacea, molluscs and mammal species are 'generalists'. Several species have relatively narrow habitat requirements.	3.33
Species/taxon richness (range: 4=very high - 1=low/marginal)	3.00	Falls within the Maputaland-Pondoland region of plant endemism with app. 7000 taxa (Van Wyk & Smith, 2001). Species richness of KZN freshwater fishes is naturally low (south of the Pongola). This lake has elevated species richness because of the relict estuarine component in its fish fauna. There is a tropical richness, but reduced a bit by the isolation causing an 'island' effect.	4.00
HABITATS	(0-4)		
Diversity of types (4=Very high - 1=marginal/low)	3.00	Aquatic, littoral, pan adjacent and off-lake wetland, open sandy beach areas, protected coves, stream inflow areas, coastal dune, swamp forest. This is one of very few coastal lakes in the country. It is the only system that has lost its estuarine connection, but which retains a relict estuarine fauna. The high diversity of submerged, emergent and floating plants, together with connect pans, swamps and wetlands, provides a very high diversity of freshwater habitats not found anywhere else at one locality. High diversity of habitats, reduced by the even morphology of the basin, few rocks and consistent sized sand grains.	4.00
Refugia (4=Very high - 1=marginal/low)	2.75	Refugia for smaller similar systems during extended drought. This is one of the few (and possibly only) permanent deep freshwater bodies on the Maputaland flats. It becomes a refuge during drought and centre of distribution for fishes that inhabit pans, swamps and wetlands on the wider coastal plain. The embayments are very important to the mammals, herpetofauna, crustacea and molluscs.	4.00
Sensitivity to flow changes (4=Very high - 1=marginal/low)	2.75	Large ground water dependant system more resilient to change. The main habitat types, gentle banks and shallow water with submerged vegetation, are susceptible to lake water level drop. Because of the systems morphology these habitats are lost verv	3.67

DETERMINANTS	SCORE	REASONING	CONFIDENCE
		rapidly below critical water levels. Affected by water level changes.	
Sensitivity to flow related water quality changes (4=Very high - 1=marginal/low)	2.40	Large ground water dependant system more resilient to change. At very low levels saltwater intrusion might occur, which will result in the loss of (vegetated) habitat as well as primary freshwater elements of the fish assemblage. Most species would be affected. Lake water levels would need to drop below sea level for this to occur. At levels above this water quality should remain suitable for all fishes in the lake. Flow translates into Water level in these lakes. WQ parameter influenced by lake level is EC The dystrophic water is easily enriched with nutrients.	3.75
Migration route/corridor (instream & riparian, range: 4=very high - 0 = none)	2.00	Occurs within a string of such systems along the coastline but not likely to be important for plant species migration. The lake itself is not used as a migration route, but high water levels do facilitate migration to adjacent swamps, pans and wetlands for several species of fishes. Lake arms and smaller basins have greater proximity to a higher area of such peripheral wetlands and are therefore more important than the Main Basin in this regard. These include two species of catfish (<i>Clarias theodorae</i> and to a lesser extent <i>Clarias gariepinus</i>) as well as climbing perch (<i>Ctenopoma multispine</i>). This is an endorheic system - but hippopotami, crocodiles and birds do move between waterbodies.	3.33
Importance of conservation & natural areas (range, 4=very high - 0=very low)	4.00	Within iSimangaliso and largest freshwater lake in southern Africa, RAMSAR site. This is a unique lake in that its biota retains a relict fauna of a geological past. It remains in good condition and its catchment can still be managed to protect its ecological integrity as a relatively pristine freshwater lake adjacent to a World Natural heritage site. This is a Ramsar and World Heritage Site - the highest conservation rating that can be given.	4.33
MEDIAN OF DETERMINANTS	3		
EISC	HIGH		1

3.5.3 Reference conditions

The expected reference condition at EWR SB is described in Table 3.32.

COMPONENT	REFERENCE CONDITION	CONFIDENCE	REFERENCES
Water quality	DO, Turbidity and Conductivity as Present. DIN ~0.07 mg/l (deeper waters) and 0.1 mg/l (shallower waters, reflecting some input from peripheral vegetation under natural); DIP ~0.02 mg/l.	2	Expert judgement based on available data; De Villiers & Thiart, 2007.
Vegetation	The aquatic zone is expected to be well developed, in keeping with lacustrine	4	Mucina & Rutherford, 2006; Allanson, 1979

Table 3.32Reference condition at EWR SB

COMPONENT		CONFIDENCE	
	environments, with species distribution		Ricky Laylor, per
	varying according to water clarity (which		COM.
	anects light penetration) and the degree of		
	wind and wave disturbance. In Shallow,		
	More sectuded areas water Lilles		
	(Nymphaea nouchail var. caerulea) and		
	Broad-leaved Pondweed (Potamogeton		
	schweiniurini) are expected to be highly		
	Abundant, with Water Hornwort		
	(Ceratophylium demersum var.		
	demersum) in quiet deeper waters. In		
	more exposed areas where wind and		
	wave action is more frequent and		
	vigorous, the aquatic zone is more likely to		
	De dominated by Fennel-leaved		
	Pondweed (Sluckenia peclinalus) and		
	Saw Weeu (Najas manna subsp. annaia).		
	spiked water-million (<i>Mynophynum</i>)		
	North Africa, is expected to be observed		
	Nonin Anica, is expected to be absent.		
	ere expected to be well developed in most		
	are expected to be well developed in most		
	Along most shores the dominant plant		
	form is likely to be address and reads		
	form is likely to be sedges and reeds,		
	Deragmitan quatralia and Elapabaria		
	Philayinites australis and Eleocharis		
	the transition area from shoreling to the		
	aquatic onvironment, growing well into the		
	water and mixing with aquatic zone		
	water and mixing with aqualic zone		
	species. In shellered areas, species more		
	(including Typha capansis, Cyperus		
	nanvrus C prolifer Ludwigia octovalvis		
	and Hydrocotyle honorionsis) should be		
	and <i>Hydrocolyle bonanensis</i>) should be		
	abundant with 100% (of hear 100%) aerial		
	be absent from this zone. Shoreline		
	macrophytes are those species that occur		
	hetween the emergent macrophytes and		
	the tree line and along open exposed		
	heach areas where those occur. This zone		
	should be dominated by a mixture of		
	grasses and sedges (notably C		
	natalensis Juncus oxycarnus		
	Dactyloctenium geminatum and Imperata		
	cylindrica) and should be free of alien or		
	woody species. The tree line is where		
	woody vegetation starts and should		
	characteristically be in keeping with the		
	surrounding vegetation type. This is		
	mostly Northern Coastal [Dune] Forest but		
	with some areas of Manutaland Coastal		
	Belt The beginning of this zone should		
	remain clearly defined and usually		
	indicates a level beyond which inundation		
	is rare. Some encroachment of the		
1		l	1

			DEEEDENCES
COMPONENT		CONFIDENCE	REFERENCES
	shoreline zone by woody species is		
	raduaad by lake level fluctuations. Llich		
	reduced by lake level incluations. Figh		
	woody aenal cover should dominate this		
Malluaga	Zone and allen species should be absent.	Г.	Miranda (2012)
IVIOIIUSCS	Condition with no rarebia.	5	Miranda (2012)
Crustacea	no info available of this condition	3	
Fish	Part of an oligo-mesotrophic, endorheic lake with seasonally connected swamps and shallow pans. Large, deep basin with naturally fluctuating water level. Good water quality characterised by well oxygenated, clear waters with naturally elevated chloride and calcium concentrations. At high levels large areas of shallow shelf areas are used and fish gain access to flooded marginal habitats and allocthonous carbon inputs. Shallow areas become increasingly wave washed with decreasing water level and during drought are poor fish habitat because aquatic vegetation has died back and been impacted by waves, summer day time water temperatures are too high for adults of several species, and detritus and microphytobenthic beds (diatoms) are churned up.	Н	Allanson BR (ed) (1979). Lake Sibaya. Monographiae Biologicae 36: 1-394. Dr W. Junk Publishers, The Hague
Herpetofauna	There were more crocodiles present.	5	EKZNW census data
Birds*	The avifauna was dominated by Reed & Whitebreasted Cormorants. Other common species included three species of kingfishers, African Fish Eagles (7prs), several large herons, African Darter and Greyheaded Gull. The area was an important breeding area for Whitefronted Plover, and supported few other waders. The sheltered bays had a distinctive fauna characterised by African Jacana, Black Crake, African Purple Gallinule and Common Moorhen. Little Grebe (=Dabchick) was the most common species found in open water areas.	3	Bruton (1979)
Semi-aquatic	More hippopotami used to occur than are	5	EKZNW census data
mammals	present.		

3.5.4 Baseline ecological condition

This section summarises the outcome of the discipline specific Ecoclassification assessments, which are provided in Volume 3: specialist reports.

3.5.4.1 Causes and sources

Causes and sources for the Present Ecological State at EWR SB are summarised in Table 3.33.

COMPONENT	CAUSES	SOURCES	FLOW OR NON-FLOW RELATED	CONFIDENCE
Water quality	DIN/DIP enrichment in shallow waters; DDT contamination in muddy extremities.	Increased rural/forestry development; Spraying of DDT for malaria	Non-flow	2
	Altered species composition in the aquatic zone.	Presence of <i>M. spicatum</i> in the aquatic zone.	Non-flow	5
Vegetation	Altered species composition in the shoreline vegetation.	Encroachment of zone by woody species including alien species (<i>S. cordatum</i> and <i>C.</i> <i>equisetifolia</i>).	Flow	5
	Reduced non-woody cover in emergent macrophytes and shoreline vegetation.	Thinning and mortality due to water stress from receding lake levels.	Flow	4
Molluscs	Invasion of an alien species (Tarebia).		Non-flow	5
Crustacea	Habitat altered by the invasion of an alien species (Myriophyllum).		Non-flow	3
Fish	Lake water level reductions.	Surface water and groundwater abstraction.	Flow	5
Herpetofauna	Severe poaching (of crocodiles and nests) has decimated numbers.		Non-flow	5
Birds*	Water level, emergent vegetation, shallow backwater areas, exposed shoreline etc.	Various	Largely flow related	4
Semi-aquatic mammals	Severe poaching of hippopotami has		Non-flow	5

Table 3.33 Causes and sources of PES at EWR SB

* Birds were assessed for the overall Lake and not individual Basins/ Arms

3.5.4.2 Trends

Trends in the Present Ecological Status for all components of EWR SB are summarised below in Table 3.34.

decimated numbers.

COMPONENT	ABSENT/POSITIVE/NEGATIVE	CONFIDENCE
Water quality	Negative.	2
Vegetation	Negative for alien species; negative for receding lake levels.	4
Molluscs	Negative - the <i>Tarebia</i> arestill having and increasing impact.	3
Crustacea	Absent - system has now stabilised since the introduction of <i>Myriophyllum</i> (>50 years ago) which altered habitat.	3
Fish	Negative.	5
Herpetofauna	Negative - Crocodile numbers declining rapidly.	5
Birds*	Negative for Cormorants, darters, king fishers and birds of prey which have decreased; positive for other species as they have increased with recent drying.	4
Semi-aquatic mammals	Negative - Hippo numbers still declining rapidly.	5

Table 3.34Trends in PES for EWR SB

* Birds were assessed for the overall Lake and not individual Basins/ Arms

3.5.5 Ecostatus

The Present Ecological Status and the Recommended Ecological Category of each component at EWR SB is summarised below in Table 3.35.

COMPONENT	% EC	EC	REC	OF SIGNIFICANCE/REASON FOR REC
Water quality	94	A	А	Water quality resetting mechanisms (e.g. flushing) in lakes are very weak, thus maintain high WQ.
Vegetation	54.2	D	В	The EIS of the area is HIGH so the system should be managed towards a B.
Molluscs	70	С	С	Tarebia cannot be controlled.
Crustacea	85	В	В	Myriophyllum stable.
Fish	85	в	A	Prolonged WL drop has reduced habitat for key elements of the fish assemblage. This habitat loss in fairly pronounced in this basin, and of more concern is that it has separated from the rest of the lake in recent months. Continued loss of water and WL reduction (which is accelerated compared to the rest if the lake under separation) renders this basin more susceptible to water quality impacts. Fish species remaining in the system and will recover should WL recover. The lake is borders a World Heritage Site and is unique in the fish fauna assemblage it supports. This includes relict estuarine species, species of conservation significance, and species which are rare and threatened in KZN and SA.
Herpetofauna	65	С	A	Poaching can be stopped.
Birds*	80	В	A	Protected area; unique habitat; refuge function.
Semi-aquatic mammals	65	С	А	Poaching can be stopped.

Table 3.35	Present Ecological Status of all components at EWR SB
------------	---

* Birds were assessed for the overall Lake and not individual Basins/ Arms

In order to calculate PES the scores for Molluscs/ Crustacea and also Semi-aquatic mammals/ herpetofauna were first combined before averaging the scores across the disciplines (Table 3.36).

Table 3.36	Overall Present Ecological Status for EWR SB
------------	---

COMPONENT	INDIVIDUAL SCORE	OVERALL SCORE	OVERALL PES
Water quality	94		
Vegetation	54.2		
Molluscs/Crustacea	77.5	75.05	<u> </u>
Fish	85	75.95	C
Herpetofauna/Semi-aquatic mammals	65		
Birds*	80		

* Birds were assessed for the overall Lake and not individual Basins/ Arms

4 ECOCLASSIFICATION, ECOLOGICAL SENSITIVITY AND IMPORTANCE, AND THE RECOMMENDED AND ALTERNATIVE ECOLOGICAL CATEGORIES

This section summarises the outcome of the discipline-specific Ecoclassification (PES) and Ecological Importance and Sensitivity assessments (EIS), which are provided in Volume 3: Specialist reports.

4.1 Present Ecological Status and Ecological Importance and Sensitivity

The PES and EIS of each of the EWR Zones are provided in Table 4.1.

Table 4.1 I LO and LIO of cach of the LWIN Zones in Lake Obaya
--

AREA	CODE	PES	EIS
Main Basin	MB	B/C	HIGH
Northern Arm	NA	B/C	HIGH
Western Arm	WA	B/C	HIGH
South-western Basin	SWB	B/C	HIGH
Southern Basin	SB	С	HIGH

4.2 **Recommended and alternative ecological categories**

The recommended and alternative ecological categories for each of the Sibaya EWR zones are provided in Table 4.2. These are based solely on ecological considerations.

Table 4.2	Recommended and alternative ecological categories (EC) for each of the
	EWR Zones

ZONE	CODE	REC	AEC1
Main Basin	MB	B/C	С
Northern Arm	NA	B/C	С
Western Arm	WA	B/C	С
Southwestern Basin	SWB	B/C	С
Southern Basin	SB	B/C	С

5 **REFERENCES**

Allanson BR (1979b). The physio-chemical limnology of Lake Sibaya. pp. 42-74. In: Allanson BR (ed.) Lake Sibaya, Monographiae Biologicae 36. Dr.W., Junk Publishers, The Hague
Allanson BR (1979c). The phytoplankton and primary productivity of the lake. pp. 75-87. In: Allanson BR (ed.) Lake Sibaya, Monographiae Biologicae 36, Dr W. Junk Publishers, The Haque
Allanson BR (ed) (1979a). Lake Sibaya. Monographiae Biologicae 36: 1-394. Dr W. Junk Publishers, The Hague.
Allanson BR and Van Wyk JD (1969). An introduction to the physics and chemistry of some lakes in northern Zululand. Transactions of the Royal Society of South Africa 38: 217-240.
Allanson BR, Hill BJ, Boltt RE and Schultz V (1966). An estuarine fauna in a freshwater lake in South Africa. Nature 209: 532-533.
Allanson, B. (1979b). The lake as an ecosystem. In: Allanson, B. R. (Editor). Lake Sibaya. Monographiae Biologicae. Volume 36, Chapter 11. Dr W Junk bv Publishers, The Hague.
Allanson, BR and Van Wyk, JD (1969) An introduction to the physics and chemistry of some lakes in northern Zululand. Trans. Roy. Soc. S. Afr 38 (3): 217-240.
Appleton, C. C. (1977). The freshwater mollusca of Tongaland. With a note on molluscan distribution in Lake Sibaya. Annals of the Natal Museum. 23(1):129-144.
Appleton, C.C. (1976). The influence of abiotic factors on the distribution of Biomphalaria pfeifferi(Krauss, 1848) (Planorbidae, Mollusca) and its life-cycle in south-eastern Africa. Unpublished M.Sc. thesis, Rhodes University.
Appleton, C.C. (1980). Non-marine molluscs and schistosomiasis in Maputaland. In: Bruton, M.N. and Cooper, K.H. (Editors). Studies on the Ecology of Maputaland. Chapter 13. Rhodes University, Grahamstown.
Appleton, C.C., Forbes, A. T. & Demetriades, N. T. (2009). The occurrence, bionomics and potential impacts of the invasive freshwater snail Tarebia granifera (Lamarck, 1822) (Gastropoda: Thiaridae) in South Africa. Zool. Med. Leiden 83:525-536.
Bates, M.F., Branch, W.R., Bauer, A.M., Burger, M., Marais, J., Alexander, G.J. & de Villiers, M.S. (eds). (2014). Atlas and Red List of the Reptiles of South Africa, Lesotho and Swaziland. Suricata 1. South African National Biodiversity Institute, Pretoria.
Bilal, S., Rais, M., Anwar, M., Hussain, I., Sharif, M. & Kabeer, B. 2013. Habitat association of Little Grebe (Tachybaptus ruficollis) at Kallar Kahar Lake, Pakistan. Journal of King Saud University - Science 25: 267–270.
Birkhead, M. E. 1978. Some aspects of the feeding ecology of the Reed Cormorant and Darter on Lake Kariba, Rhodesia. Ostrich 49:1-7.
Bowen SH (1976). Feeding ecology of the cichlid fish Sarotherodon mossambicus in Lake Sibaya, KwaZulu. PhD thesis, Rhodes University, South Africa.
Device CLI (4070) Depthic distance distribution and grading by Corotherador measurembious in Lake

- Bowen SH (1978). Benthic diatom distribution and grazing by Sarotherodon mossambicus in Lake Sibaya, South Africa. Freshwater Biology 8: 449 – 453.
- Bromilow, C. (2010). Problem Plants and Alien Weeds of South Africa. Briza Publications. Pretoria
- Bruton MN (1979a). The fishes of Lake Sibaya. In Allanson BR (ed). Lake Sibaya. Monographiae Biologicae 36: 162 245. W. Junk Publishers, The Hague.
- Bruton MN (1979b). The utilization and conservation of Lake Sibaya. pp. 286-312. In: Allanson BR (ed.) Lake Sibaya, Monographiae Biologicae 36, Dr W. Junk Publishers, The Hague.
- Bruton MN (1980). An outline of the ecology of Lake Sibaya, with emphasis on the vertebrate communities. In Bruton MN and Cooper KH (eds) (1980). Studies on the ecology of Maputaland. Pp 382-407. Rhodes University, Grahamstown and the Natal Branch of the Wildlife Society of South Africa, Durban.
- Bruton MN and Allanson BR (1974). The growth of Tilapia mossambica (Pisces: Cichlidae) in Lake Sibaya, South Africa. Journal of Fish Biology 6: 701 715.
- Bruton, M. (1980). An outline of the ecology of Lake Sibaya, with emphasis on the vertebrate communities. In: Bruton, M.N. and Cooper, K.H. (Editors). Studies on the Ecology of Maputaland. Chapter 31. Rhodes University, Grahamstown.
- Bruton, M. N. 1979. The amphibians, reptiles, birds and mammals of Lake Sibaya. In Allanson, B.R. (ed) Lake Sibaya. Monographiae Biologicae 36:286-312.

Cambray J and Tweddle D (2007). Croilia mossambica. The IUCN Red List of Threatened Species 2007: e.T5675A11530802. http://dx.doi.org/10.2305/IUCN.UK.2007.RLTS. T5675A11530802.en . Downloaded on 15 September 2015.

- Ceccobelli, S. & Battisti, C. 2010. On the water depth in diving sampling sites of Tachybaptus ruficollis Rendiconti Lincei, 21: 359–364
- Combrink, A, Korrûbel, J.L., Kyle, R., Taylor, R. & Ross, P. (2011a). Evidence of a declining Nile crocodile (Crocodylus niloticus) population at Lake Sibaya, South Africa
- Combrink, A. (2004). Population survey of Crocodylus niloticus (Nile crocodile) at Lake Sibaya, Republic of South Africa. Unpublished M.Sc. Thesis, University of KwaZulu-Natal, Pietermaritzburg.
- Combrink, A., Kyle, R. & Taylor, R. (2011b). The Status of Crocodiles in the iSimangaliso Wetland Park: A Preliminary Report - March 2011.
- Cyrus, D.P, Robson, N.F, Cooper, K.H., Bruton, M.N. & Bennett, G. 1980. The birds of Maputaland: a checklist and general comments. Pp307-321 in: Bruton, , M.N. & Cooper,K.H. Studies of the ecology of Maputaland. Rhodes University and the Natal Brancho f the Wildlife Society of Southern Africa. Cape & Transvaal Printers, Cape Town.
- De Villiers S and Thiart C (2007) The nutrient status of South African rivers: concentrations, trends and fluxes from the 1970s to 2005. South African Journal of Science 103: 343-349.De
- Department of Water Affairs and Forestry (DWAF) (1996) South African Water Quality Guidelines. Volume 7: Aquatic Ecosystems.
- Department of Water Affairs and Forestry. Report ENV-P-C 2003-017 Environmentek, CSIR, Pretoria
- Du Preez, L & Carruthers, V. (2009). A complete guide to the frogs of southern Africa. Struik Nature, Cape Town.
- EKZNW crocodile and hippo census reports
- Eltringham, S. K. (1999). The hippopotamuses: natural history and conservation. Poyser Natural History, Academic Press, London.
- Engelbrecht J and Bills R (2007). Silhouettea sibayi. The IUCN Red List of Threatened Species 2007: e.T20223A9180563. http://dx.doi.org/10.2305/IUCN.UK.2007.RLTS. T20223A9180563.en . Downloaded on 15 September 2015.
- Fjeldsa, J. 2004. The Grebes: Podicipedidae. Oxford University Press, Oxford, UK. 246pp.
- Forbes AT and Hill BJ (1969). The physiological ability of a marine crab Hymenosoma orbiculare Desm. to live in a subtropical freshwater lake. Transactions of the Royal Society of South Africa 38: 271-244.
- Hart, R. (1979). The invertebrate communities: zooplankton, zoobenthos and littoral fauna. In: Allanson, B. R. (Editor). Lake Sibaya. Monographiae Biologicae. Volume 36, Chapter 7. Dr W Junk by Publishers, The Hague.
- Hart, R. (1980). The aquatic invertebrates of Lake Sibaya. In: Bruton, M.N. and Cooper, K.H. (Editors). Studies on the Ecology of Maputaland. Chapter 12. Rhodes University, Grahamstown.
- Hill BJ (1969). The bathymetry and possible origin of Lakes Sibayi, Nhlange and Sifungwe in Zululand (Natal). Transactions of the Royal Society of South Africa 38: 205-216.
- Hill, B. J. (1979). Bathymetry, morphology and hydrology of Lake Sibaya. In: Allanson, B. R. (Editor). Lake Sibaya. Monographiae Biologicae. Volume 36. Chapter 3. Dr W Junk by Publishers, The Hague.
- Howard-Williams, C. (1979) Distribution, biomass and role of aquatic macrophytes in Lake Sibaya. Ibid., pp. 88-107.
- Humphries M (2013) DDT residue contamination in sediments from Lake Sibaya in northern KwaZulu-Natal South Africa: Implications for conservation in a World Heritage Site. Chemosphere 93: 1494-1499.
- Humphries M and Benitez-Nelson C (2013) Recent trends in sediment and nutrient accullulation rates in coastal freshwater Lake Sibaya, South Africa. Marine and Freshwater Research 64: 1087-1099.
- Hustler, K. 1992. Buoyancy and its constraints on the underwater foraging behaviour of Reed Cormorants Phalacrocorax africanus and Darters Anhinga melanogaster. Ibis 134: 229-236.
- IUCN (2015). The IUCN Red List of Threatened Species. Version 2015-3. <www.iucnredlist.org>. Downloaded on 15 September 2015.
- Junor, F. J. R. & Marshall, B. E. 1987. Factors influencing the abundance of piscivorous birds on Lake Kyle, Zimbabwe. Ostrich 58:168-175.

- Kleynhans, C.J. and Louw, M.D (2007). Reference Ecoclassification: Manual for Ecostatus determination. Joint Water Research Commission and Department of Water Affairs and Forestry report.
- Klinger, H. (1991). The social organisation and behaviour of Hippopotamus amphibius. African Wildlife: Research and Management. International Council of Scientific Unions: pp 73-75.
- Lite S.J. and Stromberg J.C. (2005). Surface water and ground-water thresholds for maintaining Populus - Salix forests, San Pedro River, Arizona. Biological Conservation 125: 153-167.
- M. du Toit, G.C. Boere, J. Cooper, M.S. de Villiers, J. Kemper, B. Lenten, S.L.Petersen, R.E. Simmons, L.G. Underhill, P.A. Whittington & O.P. Byers. 2002. Conservation assessment and management plan for southern African coastal seabirds. Avian Demography Unit, University of Cape Town.
- Miller, W. R. (2001). The bathymetry, sedimentology and seismic stratigraphy of Lake Sibaya northern KwaZulu-Natal. Bulletin 131, Council for Geoscience, Pretoria.
- Miller, W.R. (1998). The Bathymetry, Sedimentology and Seismic Stratigraphy of Lake Sibaya -Northern Kwazulu-Natal MSc dissertation: University of Natal (Durban)
- Minter, L.R., Burger, M., Harrison, J.A., Braack, H.H and Bishop, P.J. (2004). Atlas and Red Data Book of the Frogs of South Africa, Lesotho and Swaziland. Smithsonian Institute and Animal Demography Unit, Cape Town.
- Miranda, N.A.F, and Perissinotto, R. (2012) Stable Isotope Evidence for Dietary Overlap between Alien and Native Gastropods in Coastal Lakes of Northern KwaZulu-Natal, South Africa. PLoS ONE 7(2): e31897. doi:10.1371/journal.pone.0031897.
- Miranda, N.A.F. and Perissinotto, R. (2014). Effects of an alien invasive gastropod on native benthic assemblages in coastal lakes of the iSimangaliso. African Invertebrates Vol. 55 (2): 209–228.
- Mucina, L. and Rutherford, M.C. (eds) (2006). The Vegetation of South Africa, Lesotho and Swaziland. Strelizia 19. South African National Biodiversity Institute, Pretoria
- Nel J.L., Driver A., Strydom W.F., Maherry A., Petersen C., Hill L., Roux D.J., Nienaber S., van Deventer H., Swartz E. and Smith-Adao A.B. (2011). ATLAS of FRESHWATER ECOSYSTEM PRIORITY AREAS in South Africa: Maps to support sustainable development of water resources. Report to the WRC. No. TT 500/11
- Neumann, F.H., Stager, J.C., Scott, L., Venter, H.J.T. and Weyhenmeyer, C. (2008). Holocene vegetation and climate records from Lake Sibaya, Kwazulu-Natal (South Africa). Review of Palaeobotany and Palynology. 152: 113-128. Elsevier LTD
- Pitman, W.V. and Hutchison, I.P.G. (1975). A preliminary hydrological study of Lake Sibaya. Report 4/75, Hydrological Research Unit, University of the Witwatersrand.
- Pooley, E. S. (1980). Some notes on the utilization of natural resources by the tribal people. In Bruton MN and Cooper KH (eds) (1980). Studies on the ecology of Maputaland. Pp 467-479. Rhodes University, Grahamstown and the Natal Branch of the Wildlife Society of South Africa, Durban.
- Pooley, A. C. (1962). The Nile crocodile (Crocodylus niloticus): Notes on incubation period and growth rates of juveniles. Lammergeyer 2(1):1-55
- Poynton, J. C. (1980). The amphibia of Maputaland. In: Bruton, M.N. and Cooper, K.H. (Editors). Studies on the Ecology of Maputaland. Chapter 21. Rhodes University, Grahamstown.
- Raimondo, D., von Staden, L., Foden, W., Victor, J.E., Helme, N.A., Turner, R.C., Kamundi, D>A> and Manyama, P.A. (eds) (2009). Red List of South African Plants Strelitzia 25 SANBI, Pretoria
- Ryan, P. G., Cooper, J., Hockey, P. A. R. & Berruti, A. 1988. Waders (Charadrii) and other water birds on thecoast and adjacent wetlands of Natal, 1980-1981. Lammergeyer, 36, 1-33.
- SANBI (2009). Biodiversity data provided by: South African National Biodiversity Institute (Accessed through the SIBIS portal, sibis.sanbi.org, 2009-06-01)
- Skelton PH (1993). A complete guide to the freshwater fishes of southern Africa. Southern Book Publishers, Halfway House. 388 pp.
- Taylor, R. (2010). Biodiversity management strategy for hippopotamuses in the iSimangaliso Wetland Park. Ezemvelo KZN Wildlife: Internal document (26 pp).
- Taylor, R. H. (2013). Hippopotamuses. In: Perissinotto, R., Stretch, D.D. & Taylor, R.H. Ecology and Conservation of Estuarine Ecosystems: Lake St Lucia as a Global Model. Chapter 18. Cambridge University Press, Cambridge.

UNEP/Nairobi Convention Secretariat and CSIR (2009). Guidelines for the Establishment of Environmental Quality Objectives and Targets in the Coastal Zone of the Western Indian Ocean (WIO) Region, UNEP, Nairobi, Kenya, 169p.

- Van Wyk, A.E. and Smith, G. (2001). Regions of Floristic Endemism in Southern Africa: a Review with emphasis on Succulents UMDAUS Press
- Von Maltitz, G., Mucina, L., Geldenhuys, C.J., Lawes, M., Eeley, H., Adie, H., Vink, D., Fleming, G. and Bailey, C. (2003). Classification system for South African indigenous forests: An objective classification for the Department of Water Affairs and Forestry. Report ENV-P-C 2003-017 Environmentek, CSIR, Pretoria
- Vrdoljak, S. M. & Hart, R. C. (2007): Groundwater seeps as potentially important refugia for freshwater fishes on the Eastern Shores of Lake St Lucia, KwaZulu-Natal, South Africa, African Journal of Aquatic Science, 32:2, 125-132.
- Water Research Commission (WRC) 2012) The Estuary Health Index: A standardised metric for use in estuary management and the determination of ecological water requirements. Report No. 1930/1/12. Pretoria
- Weerts SP and Cyrus DP (2001). The ichthyofauna of the Mhlathuze coastal lakes: some preliminary results. Southern African Journal of Aquatic Sciences 26: 99-107.
- Whitfield AK (1990). Life-history styles of fishes in South African estuaries. Environmental Biology of Fishes 28: 295 308.
- Whitfield AK (1998). Biology and ecology of fishes in southern African estuaries. Ichthyological Monographs of the JLB. Smith Institute of Ichthyology, 2, 223 pp.
- Zhang, X., Liu, X. and Wang, H. (2015). Effects of water level fluctuations on lakeshore vegetation of three subtropical floodplain lakes, China Hydrobiologia 747:43-52 Springer-Verlag